
 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 1 P.Revathy,Assistant Professor

LECTURE NOTES

UNIT- I

Object-Oriented Thinking : Different paradigms for problem solving, need for OOP paradigm,

differences between OOP and Procedure oriented programming, Overview of OOP concepts -

Abstraction, Encapsulation, Inheritance and Polymorphism.

C++ Basics: Structure of a C++ program, Data types, Declaration of variables, Expressions,

Operators, Operator Precedence, Evaluation of expressions, Type conversions, Pointers, Arrays,

Pointers and Arrays, Strings, Structures, References. Flow control statement- if, switch, while, for,

do, break, continue, goto statements. Functions - Scope of variables, Parameter passing, Default

arguments, inline functions, Recursive functions, Pointers to functions. Dynamic memory allocation

and de-allocation operators - new and delete, Pre-processor directives.

C++ is a general-purpose and multi-paradigm computer programming language.

The C++ programming language supports both object-oriented programming and generic programming.

The C++ programming language is used to create applications that will run on a wide variety of hardware

platforms such as personal computers running Windows, Linux, UNIX, and Mac OS.

The C++ programming language was created by Bjarne Stroustrup in the year 1983, at Bell Laboratories,

USA.

The C++ programming language is said to be the superset of C programming language.

The programs written in C programming language can run in the C++ compiler.

The C++ programming language is an extension of the C programming language.

1.1 Different paradigms of problem solving:

The programming paradigm is the way of writing computer programs. There are four programming

paradigms and they are as follows.

 Monolithic programming paradigm

 Structured-oriented programming paradigm

 Procedural-oriented programming paradigm

 Object-oriented programming paradigm

Monolithic Programming Paradigm:

The Monolithic programming paradigm is the oldest. It has the following characteristics. It is also known

as the imperative programming paradigm.

 In this programming paradigm, the whole program is written in a single block.

 We use the goto statement to jump from one statement to another statement.

 It uses all data as global data which leads to data insecurity.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 2 P.Revathy,Assistant Professor

 There are no flow control statements like if, switch, for, and while statements in this paradigm.

 There is no concept of data types.

An example of a Monolithic programming paradigm is Assembly language.

Structure-oriented Programming Paradigm :

The Structure-oriented programming paradigm is the advanced paradigm of the monolithic paradigm. It

has the following characteristics.

 This paradigm introduces a modular programming concept where a larger program is divided into

smaller modules.

 It provides the concept of code reusability.

 It is introduced with the concept of data types.

 It also provides flow control statements that provide more control to the user.

 In this paradigm, all the data is used as global data which leads to data insecurity.

Examples of a structured-oriented programming paradigm is ALGOL, Pascal, PL/I and Ada.

Procedure-oriented Programming Paradigm :

The procedure-oriented programming paradigm is the advanced paradigm of a structure-oriented

paradigm. It has the following characteristics.

 This paradigm introduces a modular programming concept where a larger program is divided into

smaller modules.

 It provides the concept of code reusability.

 It is introduced with the concept of data types.

 It also provides flow control statements that provide more control to the user.

 It follows all the concepts of structure-oriented programming paradigm but the data is defined as

global data, and also local data to the individual modules.

 In this paradigm, functions may transform data from one form to another.

Examples of procedure-oriented programming paradigm is C, visual basic, FORTRAN, etc.

Object-oriented Programming Paradigm :

The object-oriented programming paradigm is the most popular. It has the following characteristics.

 In this paradigm, the whole program is created on the concept of objects.

 In this paradigm, objects may communicate with each other through function.

 This paradigm mainly focuses on data rather than functionality.

 In this paradigm, programs are divided into what are known as objects.

 It follows the bottom-up flow of execution.

 It introduces concepts like data abstraction, inheritance, and overloading of functions and operators

overloading.

 In this paradigm, data is hidden and cannot be accessed by an external function.

 It has the concept of friend functions and virtual functions.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 3 P.Revathy,Assistant Professor

 In this paradigm, everything belongs to objects.

Object A Object B

Examples of object-oriented programming paradigm is C++, Java, C#, Python, etc

1.2 Need for OOP Paradigm:

The structured programming made use of a top-down approach. To overcome the problems of structured

programming, the object oriented programming concept was created.

The object oriented programming makes use of bottom-up approach. It also manages the increasing

complexity.

The description of an object-oriented program can be given as, a data that controls access to code.

The object-oriented programming technique builds a program using the objects along with a set of well-

defined interfaces to that object.

In OOP, data and the functionality are combined into a single entity called an object.

Classes as well as objects carry specific functionality in order to perform operations and to achieve the

desired result.

The data and procedures are loosely coupled in procedural paradigm. Whereas in OOP paradigm, the data

and methods are tightly coupled to form objects.

These objects help to build structure models of the problem domain and enable to get effective solutions.

OOP uses various principles (or) concepts such as abstraction, inheritance, encapsulation and

polymorphism.

With the help of abstraction, the implementation is hidden and the functionality is exposed.

Use of inheritance can eliminate redundant code in a program.

Encapsulation enables the data and methods to wrap into a single entity.

Communication

Object C

Data

Functions

Functions

Data

Functions

Data

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 4 P.Revathy,Assistant Professor

Polymorphism enables the reuse of both code and design.

1.3 Differences between POP and OOP:

POP

1. C was developed by Dennis Richie in

1972.

2. C is a structured / procedure oriented

programming language.

3. C is a middle level language.

4. Importance is on procedure / steps to

solve a problem.

5. Functions are the fundamental building

blocks in C.

6. C follows top-down approach.

7. C uses scanf() & printf() functions for

standard input and output.

8. In C, the program is divided into small

parts called functions.

9. In C features like function overloading

& operator overloading is not present.

10. In C control strings required.

11. C do not have any access specifiers.

12. In C program file is saved with ‘.c‘

extension.

OOP

1. C++ was developed by Bjarne

Stroustrup in 1979.

2. C++ is an object oriented

programming language.

3. C++ is a high level language.

4. Importance is on objects rather than

procedure.

5. Objects are the fundamental building

blocks in C++.

6. C++ follows bottom-up approach.

7. C++ use cin & cout streams for

standard input & output.

8. In C++, the program is divided into

small parts called objects.

9. C++supports function

overloading & operator

overloading.

10. In C++ control strings are not required.

11. C++ has access specifiers such as

private, public, protected.

12. In C++ program file is saved with

‘.cpp’ extension.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 5 P.Revathy,Assistant Professor

1.4 Overview of OOPs Concepts:

Object-Oriented Programming is a methodology or paradigm to design a program using classes and

objects. It simplifies the software development and maintenance by providing some concepts:

The following are basic concepts of OOP

1. Object

2. Class

3. Data Encapsulation

4. Data Abstraction

5. Inheritance

6. Polymorphism

1. Object: It is a collection of no. of entities and they may represent a person or a place or a bank

account or a table of data or any item that the program has to handle.

2. Class: It is similar to structures in C language. A class is a collection of objects of the same

type.Class is a user defined data type in C++. Once a class has been defined we can create any

number of objects belonging to that class.

3. Data Encapsulation: The process of combining data and functions into a single unit is called data

encapsulation. With using encapsulation the data is not accessible outside the world only those

functions which are present in the class can access the data.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 6 P.Revathy,Assistant Professor

4. Data Abstraction: It refers to the act of representing essential features without including the

background details or any explanations.

Inheritance: It is the process of objects of one class acquiring the properties of objects of another class. The

main advantage of inheritance is to provide the data reusability i.e., we can add additional features to the

existing class without modifying it.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

5. Polymorphism: It refers to the ability to take more than one form. In polymorphism an operation

can exhibit different behaviors in different instances. For example consider the operation of

addition of two numbers then operation will generate a sum. If the operands are strings then the

operation would produce a third string by concatenation.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 7 P.Revathy,Assistant Professor

1.5 Structure of a C++ program:

Documentation section

Link section

Class declaration section

Member function definitions section

main()

{

Declaration part;

Executable part;

}

1. Documentation section: It is a set of comment lines that gives the complete information

about the program.

Example: // Write a c program to find the simple interest//

2. Link section: It provides instructions to the compiler to link the functions from the system

library i.e., header files.

Examples:

#include<iostream.h>

is the preprocessordirective command sign. include is a pre-processor directive command. iostream

means input & output stream.

.h means extension of header file. #include<conio.h>

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 8 P.Revathy,Assistant Professor

conio is a console input & output

3. Class declaration section:

class declaration is similar to structure declaration in C language. A class is a collection of objects of

the same type. Class is a user defined data type in C++. Once a class has been defined we can create

any number of objects belonging to that class. A class is a combination of data members and member

functions.

Syntax of class:

class classname

{

Access specifier:

Data members/variable declarations;

Access specifier:

Member functions/function declarations;

};

In the above syntax the body of a class should be end with semicolon.

4. Member function definitions section:

A class is a combination of data members and

member functions. This section declares member

functions of a class.

Syntax:

returntype classname::memberfunction()

{

Body of member function;

}

5. main()section:

Every C++ program should contain one main() function and the C++ program execution start with

main(). This section contains two parts.

1. Declaration part: This part declares all the variables which are used in the

executable part.

Example:

int a,b,c;

float x,y,z;

char a,b,c;

2. Executable part: This part contains a single statement or a group of statements.

All the statements in the declaration and executable parts should be end with semicolon (;).

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 9 P.Revathy,Assistant Professor

1.6 Data types:

1. Data type indicates what kind of data can be stored in the

variables or identifiers.

2. It can be used for storage representations.

3. Data types are fixed and pre defined meaning in C++ language.

4. Data types can be divided into four types: -

 1.Primary / fundamental data types

Ex: - int,short int,long int,float,double,longdouble,char,bool,wchar_t

 2.Derived data types

Ex: - arrays, pointers, functions, strings,structures,unions,reference

 3.User defined data types

 Ex: - typedef,enum,class.

4.Empty data type

Ex: - void (void data type is used for those function which does not

return a value).

I. Primary/Fundamental data types: -

There are three types:-

1. Integer Data types

2. Character Data types

3. Real/Floating point Data types

1.Integer Data type: -

It can be used to represent/store integer constants. There are 3 types.

1. int 2.short int 3.long int 1.int: -

1. It is indicated by the keyword ‘int’.

2. It occupies of 2 bytes of memory location i.e., 16bits.

2. short int: -

1. It is indicated by the keyword ‘short’.

2. When the given value is less than the int range then short int is

used.

3. It occupies 1byte of memory location i.e., 8bits.

3. long int: -

1. It is indicated by the keyword ‘long’.

2. When the given value is greater than the ‘int’ range then long

int is used 4.It occupies 4bytes of memory location i.e., 32bits.

2. Character Data types: -

It can be used to represent/store either single character constants or

string character constants.

1. It is indicated by the keyword ‘char’.

3.It occupies 1byte of memory location i.e., 8bits.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 10 P.Revathy,Assistant
Professor

3. Real/Floating point data types: -

It can be used to represent/store Real/Floating point constants. There are

3 types.

1.float 2.double 3.long double

41.float: -

1) It is indicated by the keyword ‘float’.

2) It occupies 4bytes of memory location. i.e., 32bits.

2. double: -

1) It is indicated by the keyword ‘double’.

2) When the given value is greater than the float range then double

is used.

3) It occupies 8bytes of memory location i.e., 64bits.

3. long double: -

1) When the given value is greater than the double range then long

double is used.

2) It occupies 10 bytes of the memory location i.e., 80bits.

4.Additional datatypes in C++ :

1. class:

Class is a user defined data type in C++.

It is similar to structures in C language. A class is a collection of

objects of the same type. Once a class has been defined we can create

any number of objects belonging to that class. A class is a combination

of data members and member functions.

Syntax of class: class classname

{

Access specifier:

Data members/variable declarations; Access specifier:

Member functions/function declarations;

};

2.boolean:

Boolean data type is used for storing boolean or logical values. A

boolean variable can store either true or false. Keyword used for

boolean data type is bool.

Syntax:

bool variablename;

3. wchar_t:

It is wide character literal constant. Wide character data type is also a

character data type but this data type has size greater than the normal 8-

bit datatype. Represented by wchar_t. It is generally 2 or 4 bytes long.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 11 P.Revathy,Assistant
Professor

4. Reference:

A reference is an alias (alternative name) for previously declared

variable or object.

1.7 Declaration of variables :
Variables in C++ are a name given to a memory location. It is the basic unit of storage in a program.

 The value stored in a variable can be changed during program execution.

 A variable is only a name given to a memory location, all the operations done on the variable effects

that memory location.

 In C++, all the variables must be declared before use.

A typical variable declaration is of the form:

// Declaring a single variable

type variable_name;

// Declaring multiple variables:

type variable1_name, variable2_name, variable3_name;

A variable name can consist of alphabets (both upper and lower case), numbers, and the underscore ‘_’

character. However, the name must not start with a number.

Initialization of a variable in C++

In the above diagram,

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 12 P.Revathy,Assistant
Professor

datatype: Type of data that can be stored in this variable.

variable_name: Name given to the variable.

value: It is the initial value stored in the variable.

Rules For Declaring Variable:

 The name of the variable contains letters, digits, and underscores.

 The name of the variable is case sensitive (ex Arr and arr both are different variables).

 The name of the variable does not contain any whitespace and special characters (ex #,$,%,*, etc).

 All the variable names must begin with a letter of the alphabet or an underscore(_).

 We cannot used C++ keyword(ex float,double,class)as a variable nam

1.8 Expressions:

C++ expression consists of operators, constants, and variables which are arranged according to the rules of

the language. It can also contain function calls which return values. An expression can consist of one or

more operands, zero or more operators to compute a value. Every expression produces some value which

is assigned to the variable with the help of an assignment operator.

Examples of C++ expression:

1. (a+b) - c

2. (x/y) -z

3. 4a2 - 5b +c

4. (a+b) * (x+y)

1.9 Operators:

Operator is a symbol which specifies an operation to be performed between the

operands. The following are the different operators available in C++.

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. sizeof() operator

5. Assignment operators

6. Conditional/Ternary operator

7. Increment and decrement operators

8. Bitwise operators

9. Specialoperators(Commaoperator(,),addressoperator(&),dotoperator(.),Valueata

ddress operator(*),arrow operator(->))

10. Additional operators in C++

1. Arithmetic operator:-

1. Arithmetic operators are used to perform basic arithmetic operations between

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 13 P.Revathy,Assistant
Professor

the operands.

2. There are 5 types of Arithmetic operators in C language they are +, -,* ,/ ,%.

3. Division operator(/) gives the result in quotient.

4. Modulus operator(%) gives the result in remainder.

5. % operator cannot be worked with the real constants.

2. Relational operators:-

1. Relational operators are used to compare the relation between the operands.

2. There are 6 types of relational operators in C language they are <, >, <=, >=,! = , ==.

3. Relational operator gives the result either in 1 (true) or 0 (false).

3. Logical operators:-

1. Logical operators are used to combine two or more relational conditions.

2. Logical operators gives the result either in 1 (true) or 0 (false).

3. There are 3 types of Logical operators in c language

1. Logical AND (&&).

2. Logical OR (||).

3. Logical NOT (!).

4. sizeof operator:- This operator can be used to find the number of bytes

occupied by a variable or data type.

Syntax:- sizeof(operand);

5. Assignment operator:-Values can be assigned to a variables using assignment

operator in c language. The symbol of assignment operator is ‘=’.

Assignment operator supports 5short hand assignment operators in C language they are += , - = ,

* = , /= , %=

6. Conditional operator/Ternary opertor:-

In C language ‘?’ and ‘:’ are called conditional operator or ternary operators in C language.

Syntax:- Exp1?Exp2:Exp3;

Here first Exp1 is evaluated, if Exp1 is true then Exp2 is executed otherwise Exp3 is executed.

7. Increment and Decrement operator:-

1. These operators are used to increment or decrement the value of the variable by 1.

2. ‘ ++ ’ is the increment operator in C language.

3. ‘-- ’ is the decrement

operator in C language.

4.There are 4 types of

operators in C language.

1. Pre-increment operator

2. Post-increment operator

3. Pre-decrement operator

4. Post-decrement operator

1. Pre-increment operator:

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 14 P.Revathy,Assistant
Professor

1. ++ operator is placed before the operand is called pre-increment operator. Ex: ++x,++a

2. Pre-increment operator specifies first increment the value of the variable by 1

and then assigns the incremented value to other variable.

2. Post-increment operator:

1. ++ operator is placed after the operand is called post-increment operator. Ex: x++,a++

2. Post-increment operator specifies first assigns the value of the variable to

other variable and then increments the value of the variable by1.

3. Pre-decrement operator:

1. -- operator is placed before the operand is called pre-decrement operator. Ex:--x,--a

2. Pre-decrement operator specifies first decrement the value of the variable by 1

and then assigns the decremented value to other variable.

4. Post-decrement operator:

1. -- operator is placed after the operand is called post-decrement operator. Ex:x--,a--

2. Post-decrement operator specifies first assigns the value of the variable to

other variable and then decrements the value of the variable by1.

8. Bitwise operators:The data stored in a computer memory as a sequence of 0’s and

1’s.There are some operators works with 0’s and 1’s are called bitwise operators.

Bitwise operators cannot be worked with real constants.

There are 6 types of operators in C language.

1. Bitwise AND (&)

2. Bitwise OR (|)

3. Bitwise X-OR (^)

4. Bitwise left shift (<<)

5. Bitwise right shift (>>)

6. Bitwise 1's complement (~)

1. Bitwise AND (&):The result of the bitwise AND is 1 when both the bits are 1 otherwise 0.

2. Bitwise OR (|):The result of the bitwise OR is 0 when both the bits are 0 otherwise 1.

3.Bitwise X-OR (^):The result of the bitwise X-OR is 1 when one bit is 0 and

other bit is 1 otherwise 0.

4. Bitwise left shift (<<): This operator can be used to shift the bit positions

to the left by ‘n’ positions.

5. Bitwise right shift (>>):This operator can be used to shift the bit positions to the

right by ‘n’ positions.

6. Bitwise 1's complement (~): This operator can be used to reverse the

bit i.e., it changes from 0 to 1 and 1 to 0.

9. Special operators-

Special operators(Comma operator(,),arrow operator(-

>),address operator(&),dot operator(.),Value at address operator(*))

10. Additional operators in C++

1. Typecasting operator:

Converting one data type into another data type is called type casting operator in

C++. Syntax:

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 15 P.Revathy,Assistant
Professor

(datatype)variable;

2.Insertion operator(<<):

This operator is used to print the output values on

the monitor.

3.Extraction operator(>>):

This operator is used to read the data values from

the keyboard.

4.Scope resolution operator(::):

It is to used to refer global data when the local and global variables have the

same name.

 Syntax:

returntype classname::memberfunction()

{

Body of member function;

}

5.Memory management operators:

There are 2 types of operators in C++.

They are 1.new 2.delete

1. new operator:-

new operator can be used to create objects of any type .Hence new operator allocates sufficient
memory to hold data of objects and it returns address of the allocated memory.

Syntax:

pointer-variable = new data-type;

Ex: int *p = new int;

2. delete operator:-

If the variable or object is no longer required or needed then it is destroyed by “delete” operator, there

by some amount of memory is released for future purpose.

Syntax:

delete pointer-variable;

Ex: delete p;

6.Manipulators:

These are used for formatting the data on

the monitor.

Ex:endl and setw operators.

1.10 Operator Precedence :

The precedence of operator species that which operator will be evaluated first and next. The associativity

specifies the operators direction to be evaluated, it may be left to right or right to left.

Let's understand the precedence by the example given below:

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 16 P.Revathy,Assistant
Professor

int data=5+10*10;

The "data" variable will contain 105 because * (multiplicative operator) is evaluated before + (additive

operator).

The precedence and associativity of C++ operators is given below:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Right to left

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == !=/td> Right to left

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Right to left

Logical AND && Left to right

Logical OR || Left to right

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 17 P.Revathy,Assistant
Professor

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

1.11 Expression Evaluation:
In the C++ programming language, an expression is evaluated based on the operator precedence and

associativity. When there are multiple operators in an expression, they are evaluated according to their

precedence and associativity. The operator with higher precedence is evaluated first and the operator with

the least precedence is evaluated last.

To understand expression evaluation in c, let us consider the following simple example expression.

1.12 Type Conversion:

Type conversion is the process of converting a data value from one data type to another data type.

In the C++ programming language, the data conversion is performed in two different methods and they are

as follows.

 Implicit Conversion (Type Conversion)

 Explicit Conversion (Type Casting)

Implicit Conversion (Type Conversion):

The type conversion is the process of converting a data value from one data type to another data type

automatically by the compiler. Sometimes type conversion is also called implicit type conversion. The

implicit type conversion is automatically performed by the compiler.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 18 P.Revathy,Assistant
Professor

For example, in c programming language, when we assign an integer value to a float variable the integer

value automatically gets converted to float value by adding decimal value 0. And when a float value is

assigned to an integer variable the float value automatically gets converted to an integer value by removing

the decimal value. To understand more about type conversion observe the following...

int i = 10 ;

float x = 15.5 ;

char ch = 'A' ;

i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i

#include <iostream>

using namespace std;

int main()

{

 int i = 95 ;

 float f = 90.99 ;

 char ch = 'A' ;

 i = f ; //float to int --> 90.99 to 90

 cout << "i value is " << i << endl;

 f = i ; // int to float --> 90 to 90.000000

 cout << "f value is " << f << endl;

 i = ch ; // char to int --> 'A' to 65

 cout << "i value is " << i << endl;

 return 0;

Explicit Conversion (Type Casting):

Typecasting is also called an explicit type conversion. Compiler converts data from one data type to

another data type implicitly. When compiler converts implicitly, there may be a data loss. In such a case,

we convert the data from one data type to another data type using explicit type conversion. To perform this

we use the unary cast operator. To convert data from one type to another type we specify the target data

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 19 P.Revathy,Assistant
Professor

type in parenthesis as a prefix to the data value that has to be converted. The general syntax of typecasting

is as follows.

Example

int totalMarks = 450, maxMarks=600; ;

floataverage ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values. When we perform

totalMarks / maxMarks the result is a float value, but the destination (average) datatype is a float. So we

use type casting to convert totalMarks and maxMarks into float data type.

#include <iostream>

using namespace std;

int main()

{

 int a, b, c ;

 float avg ;

 cout << "Enter any three integer values : ";

 cin >> a >> b >> c;

 avg = (a + b + c) / 3 ;

 cout << "avg before type casting = " << avg << endl;

 avg = (float)(a + b + c) / 3 ;

 cout << "avg after type casting = " << avg << endl;

 return 0;

1.13 Pointers:
Pointers are symbolic representations of addresses. They enable programs to simulate call-by-

reference as well as to create and manipulate dynamic data structures. Iterating over elements in

arrays or other data structures is one of the main use of pointers.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 20 P.Revathy,Assistant
Professor

The address of the variable you’re working with is assigned to the pointer variable that points to

the same data type (such as an int or string).

Syntax:
datatype *var_name;

int *ptr; // ptr can point to an address which holds int data

How to use a pointer?
 Define a pointer variable

 Assigning the address of a variable to a pointer using the unary operator (&) which returns the

address of that variable.

 Accessing the value stored in the address using unary operator (*) which returns the value of

the variable located at the address specified by its operand.

The reason we associate data type with a pointer is that it knows how many bytes the data is stored

in. When we increment a pointer, we increase the pointer by the size of the data type to which it

points.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 21 P.Revathy,Assistant
Professor

// C++ program to illustrate Pointers

#include <bits/stdc++.h>

using namespace std;

void geeks()

{

 int var = 20;

 // declare pointer variable

 int* ptr;

 // note that data type of ptr and var must be same

 ptr = &var;

 // assign the address of a variable to a pointer

 cout << "Value at ptr = " << ptr << "\n";

 cout << "Value at var = " << var << "\n";

 cout << "Value at *ptr = " << *ptr << "\n";

}

// Driver program

int main()

{

 geeks();

 return 0;

}

Output
Value at ptr = 0x7ffe454c08cc

Value at var = 20

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 22 P.Revathy,Assistant
Professor

Value at *ptr = 20

1.14 Arrays :

 An array is a collection of data belonging to the same datatype and category, stored in contiguous

memory locations.

 The size of the array remains fixed once declared. The indexing in the arrays always starts from 0.

 The memory locations in an array are contiguous, which means that the difference between

adjacent addresses is equal to the size of elements belonging to that datatype.

Declaring an Array in C++:

The syntax for the declaration of C++ array:

datatype arrayname[size];

Eg: float a[10];

Initializing Arrays:

The common syntax for the initialization of a C++ array:

datatype arrayname[size]={element1,element2,.........,elementarraysize};

Example:

int a[5]={10,20,30,40,50};

1.15 Pointers and Arrays:

In C++, Pointers are variables that hold addresses of other variables. Not only can a pointer store the

address of a single variable, it can also store the address of cells of an array.

Consider this example:

int *ptr;

int arr[5];

ptr=arr;

Here, ptr is a pointer variable while arr is an int array. The code ptr = arr; stores the address of the first

element of the array in variable ptr.

Notice that we have used arr instead of &arr[0]. This is because both are the same. So, the code below is

the same as the code above.

int *ptr;

int arr[5];

ptr=&arr[0];

The addresses for the rest of the array elements are given by &arr[1], &arr[2], &arr[3], and &arr[4].

https://www.programiz.com/cpp-programming/pointers
https://www.programiz.com/cpp-programming/arrays

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 23 P.Revathy,Assistant
Professor

Point to Every Array Elements

Suppose we need to point to the fourth element of the array using the same pointer ptr.

Here, if ptr points to the first element in the above example then ptr + 3 will point to the fourth element.

For example,

int *ptr;

int arr[5];

ptr=arr;

ptr+1 is equivalent to &arr[1];

ptr+2 is equivalent to &arr[2];

ptr+3 is equivalent to &arr[3];

ptr+4 is equivalent to &arr[4];

 Working of C++ Pointers with Arrays

Note: The address between ptr and ptr + 1 differs by 4 bytes. It is because ptr is a pointer to an int data.

And, the size of int is 4 bytes in a 64-bit operating system.

Similarly, if pointer ptr is pointing to char type data, then the address between ptr and ptr + 1 is 1 byte. It

is because the size of a character is 1 byte.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 24 P.Revathy,Assistant
Professor

Example 1: C++ Pointers and Arrays

C++ Program to display address of each element of an array

 #include <iostream>

using namespace std;

int main()

{

 float arr[3];

 // declare pointer variable

 float *ptr;

 cout << "Displaying address using arrays: " << endl;

 // use for loop to print addresses of all array elements

 for (int i = 0; i < 3; ++i)

 {

 cout << "&arr[" << i << "] = " << &arr[i] << endl;

 }

 // ptr = &arr[0]

 ptr = arr;

 cout<<"\nDisplaying address using pointers: "<< endl;

 // use for loop to print addresses of all array elements

 // using pointer notation

 for (int i = 0; i < 3; ++i)

 {

 cout << "ptr + " << i << " = "<< ptr + i << endl;

 }

 return 0;

}

Output
Displaying address using arrays:

&arr[0] = 0x61fef0

&arr[1] = 0x61fef4

&arr[2] = 0x61fef8

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 25 P.Revathy,Assistant
Professor

Displaying address using pointers:

ptr + 0 = 0x61fef0

ptr + 1 = 0x61fef4

ptr + 2 = 0x61fef8

In the above program, we first simply printed the addresses of the array elements without using the pointer

variable ptr.Then, we used the pointer ptr to point to the address of a[0], ptr + 1 to point to the address

of a[1], and so on.

1.16 Strings :

Strings are used for storing text.

A string variable contains a collection of characters surrounded by double quotes.

Example:

Create a variable of type string and assign it a value:

string greeting = "Hello";

To use strings, you must include an additional header file in the source code, the <string> library:

Example:

// Include the string library

#include <string>

// Create a string variable

string greeting = "Hello";

String Concatenation

The + operator can be used between strings to add them together to make a new string. This is

called concatenation:

Example:

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 26 P.Revathy,Assistant
Professor

string firstName = "John ";

string lastName = "Doe";

string fullName = firstName + lastName;

cout << fullName;

In the example above, we added a space after firstName to create a space between John and Doe on output.

However, you could also add a space with quotes (" " or ' '):

Example:

string firstName = "John";

string lastName = "Doe";

string fullName = firstName + " " + lastName;

cout << fullName;

Append:

A string in C++ is actually an object, which contain functions that can perform certain operations on

strings. For example, you can also concatenate strings with the append() function:

Example:

string firstName = "John ";

string lastName = "Doe";

string fullName = firstName.append(lastName);

cout << fullName;

1.17 Structure:

 Structure is a collection of different data types. It is similar to the class that holds different types of data.

The Syntax Of Structure :

struct structure_name

{

 // member declarations.

}

In the above declaration, a structure is declared by preceding the struct keyword followed by the

identifier(structure name). Inside the curly braces, we can declare the member variables of different

types. Consider the following situation:

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 27 P.Revathy,Assistant
Professor

struct Student

{

 char name[20];

 int id;

 int age;

}

In the above case, Student is a structure contains three variables name, id, and age. When the structure is

declared, no memory is allocated. When the variable of a structure is created, then the memory is

allocated. Let's understand this scenario.

How to create the instance of Structure?

Structure variable can be defined as:

Student s;

Here, s is a structure variable of type Student. When the structure variable is created, the memory will be

allocated. Student structure contains one char variable and two integer variable. Therefore, the memory for

one char variable is 1 byte and two ints will be 2*4 = 8. The total memory occupied by the s variable is 9

byte.

How to access the variable of Structure:

The variable of the structure can be accessed by simply using the instance of the structure followed by the

dot (.) operator and then the field of the structure.

For example:

1. s.id = 4;

In the above statement, we are accessing the id field of the structure Student by using the dot(.) operator

and assigns the value 4 to the id field.

C++ Struct Example:

Let's see a simple example of struct Rectangle which has two data members width and height.

#include <iostream>

using namespace std;

 struct Rectangle

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 28 P.Revathy,Assistant
Professor

{

 int width, height;

 };

int main(void) {

 struct Rectangle rec;

 rec.width=8;

 rec.height=5;

 cout<<"Area of Rectangle is: "<<(rec.width * rec.height)<<endl;

 return 0;

}

Output:

Area of Rectangle is: 40

1.18 References in C++ :
When a variable is declared as a reference, it becomes an alternative name for an existing variable. A

variable can be declared as a reference by putting ‘&’ in the declaration.

Also, we can define a reference variable as a type of variable that can act as a reference to another

variable. ‘&’ is used for signifying the address of a variable or any memory. Variables associated with

reference variables can be accessed either by its name or by the reference variable associated with it.

Syntax:

data_type &ref = variable;

C++ Program to demonstrate use of references :

#include <iostream>

using namespace std;

int main()

{

 int x = 10;

 // ref is a reference to x.

 int& ref = x;

 // Value of x is now changed to 20

 ref = 20;

 cout << "x = " << x << '\n';

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 29 P.Revathy,Assistant
Professor

 // Value of x is now changed to 30

 x = 30;

 cout << "ref = " << ref << '\n';

 return 0;

}

Output:

x = 20

ref = 30

1.19 Flow control statements:

Control structures in C++ are of 3 types. They are

1. Conditional/Decision making control structures

2. Loop control structures

3. Unconditional control structures

1. Conditional/Decision making control execution statements.

There are 4 types of Conditional/Decision making control statements in C++ language. They are

1. if

2. if else

3. nested if else

4. switch statement

1. if statement: It can be used to execute a single statement or a group of statements based on the

condition. It is a one way branching statement in C++ language.

Syntax:

if (condition)

 {

Statements;

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 30 P.Revathy,Assistant
Professor

}

next statement;

Operation: First the condition is checked if it is true then the statements will be executed and then

control is transferred to the next statement in the program.

if the condition is false, control skips the statements and then control is transferred to the next statement

in the program.

2. if else statement: It can be used to execute a single statement or a group of statements based on the

condition. It is a two way branching statement in C++ language.

Syntax:

if (condition)

{

statement1;

}

else

{

statement2;

 }

next statement;

Operation: First the condition is checked if the condition is true then statement1 will be executed and it

skips statement2 and then control is transferred to the next statement in the program.

if the condition is false it skips statement1 and statement2 will be executed and then control is

transferred to the next statement in the program.

3. nested if else statement: If we want to check more than one condition then nested if else is used. It

is multi way branching statement in C++ language.

Syntax:

if (condition1)

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 31 P.Revathy,Assistant
Professor

{

if (condition2)

{

statement1;

}

else

{

statement2;

}

}

 else

{

statement3;

}

next statement;

Operation: First the condition1 is checked if it is false then statement3 will be executed and then

control is transferred to the next statement in the program.

If the condition1 is true then condition2 is checked, if it is true then statement1 will be executed and

then control is transferred to the next statement in the program.

If the condition2 is false then statement2 will be executed and then control is transferred to the next

statement in the program.

4. Switch statement: If we want to select one statement from more number of statements then switch

statement is used. It is a multi way branching statement in C++ language.

Syntax:

switch(expression)

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 32 P.Revathy,Assistant
Professor

{

case value1:block1; break;

case value2:block2; break;

case valuen:blockn; break;

default :default block; break;

}

next statement;

Operation: First the expression value (integer constant/character constant) is compared with all the case

values in the switch. if it is matched with any case value then the particular case block will be executed

and then control is transferred to the next statement in the program.

If the expression value is not matched with any case value then default block will be executed and then

control is transferred to the next statement in the program.

2. Loops/repetition control structures :

There are 3 types of Loops/Repetition control statements in C++ language. They are

1. while

2. do while

3. for

1. while loop statement: It is used when a group of statements are executed repeatedly until the

specified condition is true. It is also called entry controlled loop.The minimum number of execution

takes place in while loop is 0.

Syntax:

while(condition)

{

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 33 P.Revathy,Assistant
Professor

body of while loop;

}

next statement;

Operation: First the condition is checked if the condition is true then control enters into the body of

while loop to execute the statements repeatedly until the specified condition is true.

if the condition is false, the body of while loop is skipped and control comes out of the loop and

continues with the next statement in the program.

2. do while loop statement:-It is used when a group of statements are executed repeatedly until the

specified condition is true. It is also called exit controlled loop.

The minimum number of execution takes place in do while loop is 1. Syntax:-

do

{

body of do while loop;

}

while(condition); next statement;

In do-while loop condition should be end with semicolon.

Operation: In do-while loop the condition is checked at the end i.e., the control first enters into the

body of do while loop to execute the statements. After the execution of statements it checks for the

condition. if the condition is true then the control again enters into the body of do while loop to execute

the statements repeatedly until the specified condition is true.

if the condition is false then control continues with the next statement in the program.

3. for loop statement:- It is used when a group of statements are executed repeatedly until the

specified condition is true. It is also called entry controlled loop.The minimum number of execution

takes place in for loop is 0.

Syntax:-

for (initialization;condition;increment/decrement)

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 34 P.Revathy,Assistant
Professor

{

body of for loop;

}

next statement;

Operation: First initial value will be assigned. Next condition is checked if the condition is true then

control enters into the body of for loop to execute the statements. After the execution of statements the

initial value will be incremented/decremented. After initial value will be incremented/decremented the

control again checks for the condition. If the condition is true then the control is again enters into the

body of for loop to execute the statements repeatedly until the specified condition is true.

if the condition is false, the body of for loop is skipped and control comes out of the loop and continues

with the next statement in the program.

3. Unconditional control structures:

Normal flow of control can be transferred from one place to another place in the program. This can be

done by using the following unconditional statements in the C++ language.

There are 3 types of Unconditional control statements in C++ language. They are

1. goto

2. break

3. continue

1. goto statement:- goto is an unconditional statement used to transfer the control from one statement

to another statement in the program.

Syntax:- goto label; label:

Statements;

2. break statement:- break is an unconditional statement used to terminate the loops or switch

statement. When it is used in loops(while,do while,for) control comes out of the loop and continues with

the next statement in the program.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 35 P.Revathy,Assistant
Professor

When it is used in switch statement to terminate the particular case block and then control is transferred

to the next statement in the program.

Syntax:- statement; break;

3. continue statement:- continue is an unconditional statement used to control to be transferred to the

beginning of the loop for the next iteration without executing the remaining statements in the program.

Syntax:- statement; continue;

1.20 Functions:

A function is a group of statements that together perform a task. Every C++ program has at least one

function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different

functions is up to you, but logically the division usually is such that each function performs a specific

task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For example,

function strcat() to concatenate two strings, function memcpy() to copy one memory location to another

location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

 body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the parts of a

function −

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 36 P.Revathy,Assistant
Professor

• Return Type − A function may return a value. The return_type is the data type of the value the

function returns. Some functions perform the desired operations without returning a value. In this case,

the return_type is the keyword void.

• Function Name − This is the actual name of the function. The function name and the parameter list

together constitute the function signature.

• Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value to the

parameter. This value is referred to as actual parameter or argument. The parameter list refers to the

type, order, and number of the parameters of a function. Parameters are optional; that is, a function may

contain no parameters.

• Function Body − The function body contains a collection of statements that define what the

function does.

Example

Following is the source code for a function called max(). This function takes two parameters num1 and

num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 37 P.Revathy,Assistant
Professor

1.21 Scope of Variables in C++ :

In general, the scope is defined as the extent up to which something can be worked with. In

programming also the scope of a variable is defined as the extent of the program code within which the

variable can be accessed or declared or worked with. There are mainly two types of variable scopes:

1. Local Variables

2. Global Variables

Local Variables :

Variables defined within a function or block are said to be local to those functions.

•Anything between ‘{‘ and ‘}’ is said to inside a block.

•Local variables do not exist outside the block in which they are declared, i.e. they can not be accessed

or used outside that block.

•Declaring local variables: Local variables are declared inside a block.

// CPP program to illustrate usage of local variables

#include<iostream>

using namespace std;

void func()

{

 // this variable is local to the

 // function func() and cannot be

 // accessed outside this function

 int age=18;

}

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 38 P.Revathy,Assistant
Professor

int main()

{

 cout<<"Age is: "<<age;

 return 0;

}

Output:

Error: age was not declared in this scope

The above program displays an error saying “age was not declared in this scope”. The variable age was

declared within the function func() so it is local to that function and not visible to portion of p.

1.22 Parameter Passing Techniques in C/C++:

In C we can pass parameters in two different ways. These are call by value, and call by address, In C++,

we can get another technique. This is called Call by reference. Let us see the effect of these, and how

they work.

Call by value: In this technique, the parameters are copied to the function arguments. So if some

modifications are done, that will update the copied value, not the actual value.

Example

#include <iostream>

using namespace std;

void my_swap(int x, int y) {

 int temp;

 temp = x;

 x = y;

 y = temp;

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 39 P.Revathy,Assistant
Professor

}

int main() {

 int a, b;

 a = 10;

 b = 40;

 cout << "(a,b) = (" << a << ", " << b << ")\n";

 my_swap(a, b);

 cout << "(a,b) = (" << a << ", " << b << ")\n";

}

Output

(a,b) = (10, 40)

(a,b) = (10, 40)

The call by address works by passing the address of the variables into the function. So when the

function updates on the value pointed by that address, the actual value will be updated automatically.

Example:

#include <iostream>

using namespace std;

void my_swap(int *x, int *y) {

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

int main() {

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 40 P.Revathy,Assistant
Professor

 int a, b;

 a = 10;

 b = 40;

 cout << "(a,b) = (" << a << ", " << b << ")\n";

 my_swap(&a, &b);

 cout << "(a,b) = (" << a << ", " << b << ")\n";

}

Output:

(a,b) = (10, 40)

(a,b) = (40, 10)

Like the call by address, here we are using the call by reference. This is C++ only feature. We have to

pass the reference variable of the argument, so for updating it, the actual value will be updated. Only at

the function definition, we have to put & before variable name.

Example :

#include <iostream>

using namespace std;

void my_swap(int &x, int &y) {

 int temp;

 temp = x;

 x = y;

 y = temp;

}

int main() {

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 41 P.Revathy,Assistant
Professor

 int a, b;

 a = 10;

 b = 40;

 cout << "(a,b) = (" << a << ", " << b << ")\n";

 my_swap(a, b);

 cout << "(a,b) = (" << a << ", " << b << ")\n";

}

Output :

(a,b) = (10, 40)

(a,b) = (40, 10)

1.23 Default Arguments in C++ :

 A default argument is a value provided in a function declaration that is automatically assigned by the

compiler if the calling function doesn’t provide a value for the argument. In case any value is passed, the

default value is overridden.

1) The following is a simple C++ example to demonstrate the use of default arguments. Here, we don’t

have to write 3 sum functions; only one function works by using the default values for 3rd and 4th

arguments.

// CPP Program to demonstrate Default Arguments

#include <iostream>

using namespace std;

// A function with default arguments,

// it can be called with

// 2 arguments or 3 arguments or 4 arguments.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 42 P.Revathy,Assistant
Professor

int sum(int x, int y, int z = 0, int w = 0) //assigning default values to z,w as 0

{

 return (x + y + z + w);

}

// Driver Code

int main()

{

 // Statement 1

 cout << sum(10, 15) << endl;

 // Statement 2

 cout << sum(10, 15, 25) << endl;

 // Statement 3

 cout << sum(10, 15, 25, 30) << endl;

 return 0;

}

Output

25

50

80

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 43 P.Revathy,Assistant
Professor

1.24 Inline function:

C++ inline function is powerful concept that is commonly used with classes. If a function is inline, the

compiler places a copy of the code of that function at each point where the function is called at compile

time.

Any change to an inline function could require all clients of the function to be recompiled because

compiler would need to replace all the code once again otherwise it will continue with old functionality.

To inline a function, place the keyword inline before the function name and define the function before

any calls are made to the function. The compiler can ignore the inline qualifier in case defined function

is more than a line.

A function definition in a class definition is an inline function definition, even without the use of the

inline specifier.

Following is an example, which makes use of inline function to return max of two numbers −

#include <iostream>

using namespace std;

inline int Max(int x, int y) {

 return (x > y)? x : y;

}

// Main function for the program

int main() {

 cout << "Max (20,10): " << Max(20,10) << endl;

 cout << "Max (0,200): " << Max(0,200) << endl;

 cout << "Max (100,1010): " << Max(100,1010) << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 44 P.Revathy,Assistant
Professor

Max (20,10): 20

Max (0,200): 200

Max (100,1010): 1010

1.25 Recursion:

A function that calls itself is known as a recursive function. And, this technique is known as recursion.

The figure below shows how recursion works by calling itself over and over again.

 How recursion works in C++ programming

The recursion continues until some condition is met.

To prevent infinite recursion, if...else statement (or similar approach) can be used where one branch

makes the recursive call and the other doesn't.

Factorial of a Number Using Recursion:

// Factorial of n = 1*2*3*...*n

#include <iostream>

using namespace std;

int factorial(int);

int main() {

 int n, result;

 cout << "Enter a non-negative number: ";

 cin >> n;

 result = factorial(n);

 cout << "Factorial of " << n << " = " << result;

 return 0;

 }

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 45 P.Revathy,Assistant
Professor

int factorial(int n) {

 if (n > 1)

 {

 return n * factorial(n - 1);

 }

 else

 {

 return 1;

 }

}

Output :

Enter a non-negative number: 4

Factorial of 4 = 24

1.26 Pointers and Functions :

As we know that pointers are used to point some variables; similarly, the function pointer is a pointer

used to point functions. It is basically used to store the address of a function. We can call the function by

using the function pointer, or we can also pass the pointer to another function as a parameter.

They are mainly useful for event-driven applications, callbacks, and even for storing the functions in

arrays.

Syntax for Declaration of function pointer:

The following is the syntax for the declaration of a function pointer:

1. int (*FuncPtr) (int,int);

The above syntax is the function declaration. As functions are not simple as variables, but C++ is a type

safe, so function pointers have return type and parameter list. In the above syntax, we first supply the

return type, and then the name of the pointer, i.e., FuncPtr which is surrounded by the brackets and

preceded by the pointer symbol, i.e., (*). After this, we have supplied the parameter list (int,int). The

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 46 P.Revathy,Assistant
Professor

above function pointer can point to any function which takes two integer parameters and returns integer

type value.

Calling a function indirectly

We can call the function with the help of a function pointer by simply using the name of the function

pointer. The syntax of calling the function through the function pointer would be similar as we do the

calling of the function normally.

Let's understand this scenario through an example.

 #include <iostream>

 using namespace std;

 int add(int a , int b)

 {

 return a+b;

 }

 int main()

 {

 int (*funcptr)(int,int); // function pointer declaration

 funcptr=add; // funcptr is pointing to the add function

 int sum=funcptr(5,5);

 std::cout << "value of sum is :" <<sum<< std::endl;

 return 0;

 }

In the above program, we declare the function pointer, i.e., int (*funcptr)(int,int) and then we store the

address of add() function in funcptr. This implies that funcptr contains the address of add() function.

Now, we can call the add () function by using funcptr. The statement funcptr(5,5) calls the add()

function, and the result of add() function gets stored in sum variable.

1.27 Dynamic memory allocation and de-allocation operators - new and delete

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 47 P.Revathy,Assistant
Professor

Dynamic memory allocation in C/C++ refers to performing memory allocation manually by

programmer. Dynamically allocated memory is allocated on Heap and non-static and local variables get

memory allocated on Stack .

The new operator is used to allocate a memory block, while the delete operator is used to de-allocate a

memory block. In C language, we use malloc(), calloc(), and free functions, while in C++ language we

use new and delete operators to allocate and de-allocate memory blocks at run-time.

 Applications:

• One use of dynamically allocated memory is to allocate memory of variable size which is not

possible with compiler allocated memory except variable length arrays.

• The most important use is flexibility provided to programmers. We are free to allocate and

deallocate memory whenever we need and whenever we don’t need anymore. There are many cases

where this flexibility helps. Examples of such cases are Linked List, Tree, etc.

For normal variables like “int a”, “char str[10]”, etc, memory is automatically allocated and deallocated.

For dynamically allocated memory like “int *p = new int[10]”, it is programmers responsibility to

deallocate memory when no longer needed. If programmer doesn’t deallocate memory, it causes

memory leak (memory is not deallocated until program terminates).

new operator:

The new operator denotes a request for memory allocation on the Free Store. If sufficient memory is

available, new operator initializes the memory and returns the address of the newly allocated and

initialized memory to the pointer variable.

• Syntax to use new operator: To allocate memory of any data type, the syntax is:

• pointer-variable = new data-type;

Here, pointer-variable is the pointer of type data-type. Data-type could be any built-in data type

including array or any user defined data types including structure and class.

Example:

// Pointer initialized with NULL

// Then request memory for the variable

int *p = NULL;

p = new int;

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 48 P.Revathy,Assistant
Professor

 OR

// Combine declaration of pointer

// and their assignment

int *p = new int;

• Initialize memory: We can also initialize the memory using new operator:

• pointer-variable = new data-type(value);

Example:

• int *p = new int(25);

• float *q = new float(75.25);

• Allocate block of memory: new operator is also used to allocate a block(an array) of memory of

type data-type.

• pointer-variable = new data-type[size];

where size(a variable) specifies the number of elements in an array.

Example:

 int *p = new int[10]

Dynamically allocates memory for 10 integers continuously of type int and returns pointer to the first

element of the sequence, which is assigned to p(a pointer). p[0] refers to first element, p[1] refers to

second element and so on.

There is a difference between declaring a normal array and allocating a block of memory using new.

The most important difference is, normal arrays are deallocated by compiler (If array is local, then

deallocated when function returns or completes). However, dynamically allocated arrays always remain

there until either they are deallocated by programmer or program terminates.

delete Operator :

Memory de-allocation is also a part of this concept where the "clean-up" of space is done for variables

or other data storage. It is the job of the programmer to de-allocate dynamically created space. For de-

allocating dynamic memory, we use the delete operator.

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 49 P.Revathy,Assistant
Professor

Since it is programmer’s responsibility to deallocate dynamically allocated memory, programmers are

provided delete operator by C++ language.

Syntax:

// Release memory pointed by pointer-variable

delete pointer-variable;

Here, pointer-variable is the pointer that points to the data object created by new.

Examples:

 delete p;

 delete q;

To free the dynamically allocated array pointed by pointer-variable, use following form of delete:

// Release block of memory

// pointed by pointer-variable

delete[] pointer-variable;

Example:

 // It will free the entire array

 // pointed by p.

 delete[] p;

Here's a simple program showing the concept of dynamic memory allocation:

#include <iostream>

using namespace std;

int main()

{

 double* val = NULL;

 val = new double;

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 50 P.Revathy,Assistant
Professor

 *val = 38184.26;

 cout << "Value is : " << *val << endl;

 delete val;

}

1.28 Preprocessor Directives:

Preprocessor programs provide preprocessor directives that tell the compiler to preprocess the source

code before compiling. All of these preprocessor directives begin with a ‘#’ (hash) symbol. The ‘#’

symbol indicates that whatever statement starts with a ‘#’ will go to the preprocessor program to get

executed. We can place these preprocessor directives anywhere in our program.

Examples of some preprocessor directives are: #include, #define, #ifndef, etc.

Note: Remember that the # symbol only provides a path to the preprocessor, and a command such as

include is processed by the preprocessor program. For example, #include will include the code or

content of the specified file in your program.

These preprocessors can be classified based on the type of function they perform.

There are 4 Main Types of Preprocessor Directives:

1. Macros

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 51 P.Revathy,Assistant
Professor

2. File Inclusion

3. Conditional Compilation

 4. Other directives

The following table lists all the preprocessor directives in C/C++:

Preprocessor

Directives Description

#define Used to define a macro

#undef Used to undefine a macro

#include Used to include a file in the source code program

#ifdef Used to include a section of code if a certain macro is defined by #define

#ifndef
Used to include a section of code if a certain macro is not defined by

#define

#if Check for the specified condition

#else Alternate code that executes when #if fails

 OBJECT ORIENTED PROGRAMMING USING C++(CS2105ES)

CSE,NRCM Page 52 P.Revathy,Assistant
Professor

Preprocessor

Directives Description

#endif Used to mark the end of #if, #ifdef, and #ifndef

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 53 P.Revathy,AssistantProfessor

UNIT-2

C++ Classes and Data Abstraction: Class definition, Class structure, Class objects, Class

scope, this pointer, Friends to a class, Static class members, Constant member functions,

Constructors and Destructors, Dynamic creation and destruction of objects, Data

abstraction,ADT and information hiding.

C++ Classes and Data Abstraction:

2.1 Class Definition:
It is similar to structures in C language. A class is a collection of objects of the same type.

Class is a user defined data type in C++. Once a class has been defined we can create any

number of objects belonging to that class. A class is a combination of data members and

member functions.

2.2 Class structure:

class classname

{

Access specifier:

Data members/variable declarations;

Access specifier:

Member functions/function declarations;

};

In the above syntax the body of a class should be end with semicolon. The class body

contains the declaration of variables and functions. private and public are known as access

specifiers in C++.private and public denote which of the members are private and which of

the members are public. By default the members of a class are private.

Example:

Create a class called "MyClass":

 class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

 };

 The class keyword is used to create a class called MyClass.

 The public keyword is an access specifier, which specifies that members (attributes and

methods) of the class are accessible from outside the class. You will learn more

about access specifiers later.

 Inside the class, there is an integer variable myNum and a string variable myString. When

variables are declared within a class, they are called attributes.

 At last, end the class definition with a semicolon ;.

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 54 P.Revathy,AssistantProfessor

2.3 Class Objects:

A class object is a collection of no of entities and they may represent a person or a place or a

bank account or a table of data or any item that the program has to handle. Object is an instance

of a class.

Syntax :

classname objectname;

Example Program: Write a C++ program to find the addition of two numbers using class and

object. #include<iostream>

using namespace std; class add

{

private:

int a,b; public:

int getdata(); int putdata();

};

int add::getdata()

{

cout<<”Enter the values of a,b\n”; cin>>a>>b;

}

int add::putdata()

{

int c; c=a+b;

cout<<”The addition of a,b is “<<c;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 55 P.Revathy,AssistantProfessor

int main()

{

add x; x.getdata();

x.putdata();

}

2.4 Class Scope:

Class scope defines the accessibility or visibility of class variables or functions. The term scope

is defined as a place where in variable name, function name and typedef are used inside a

program. The different types of scopes are as follows,

1. Local scope

2. Function scope

3. File scope

4. Class scope and

5. Prototype scope.

1. Local Scope:

The variables that are declared in a function block are called local variable which have local

scope. These variables can only be accessed by the function/block in which they are declared.

The same variable can be used in other functions but it need to define their respective new scope.

It is possible to insert a block within another block. The variable name given to a particular

variable is local for the block and sub-block present inside it.

The formal parameter posses local scope and acts as it belongs to the outermost block.

Example:

void func

{

int i;

}

In the above function, since ‘i’ is declared inside the block, the integer ‘i’ has local scope. This

integer can not be accessed because there is no code written for accessing it.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 56 P.Revathy,AssistantProfessor

2. Function Scope:

The variables defined inside the function will have function scope. These variables can only be

accessed inside the function.

Example:

void a()

{

//statements

int label;

{

goto label; //label in scope even though declared later

}

goto label; //label ignores block scope

}

void b()

{

goto label;

}

3. File Scope:

The identifiers which are present outside the definition of function or class will have file scope.

This scope consist of local scope as well as class scope and it will be a in the outermost part of

program. The variables defined with file scope are known as global variables.

These variables can be accessed by all the functions in the program. Default value for global

variable is zero.

Example :

int d; // Global variable declaration

void display(); //Global function declaration

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 57 P.Revathy,AssistantProfessor

void main()

{

d= 8; // Assignment of global variable 'd'

void display() // Global function called by main

{

cout<<"The value of d is" <<d<<"\n";

}

void display()

{

cout<<d; //Global variable is accessible here also

}

}

4. Class Scope:

The data members and member functions defined in a class will have class scope. They are local

only to that class. Each member possess unique scope.

Example:

class A

{

int a(int x = n)

{

//statements

return x * n;

}

int b();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 58 P.Revathy,AssistantProfessor

int i=n* 2;

static const int n = 1;

int A[n];

};

int A: : b()

{

return n;

}

5. Prototype Scope:

The variables that are declared inside a function prototype have prototype scope, They are local

only up to that prototype.

Example :

int fun(int p, int q);

main ()

{

int a= 5, b = 10;

fun(a, b);

}

int fun(int p, int q)

{

int sum = p + q;

return sum;

}

2.5 this Pointer:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 59 P.Revathy,AssistantProfessor

In C++ programming, this is a keyword that refers to the current instance of the class. There can

be 3 main usage of this keyword in C++.

o It can be used to pass current object as a parameter to another method.

o It can be used to refer current class instance variable.

o It can be used to declare indexers.

this Pointer Example :

Let's see the example of this keyword in C++ that refers to the fields of current class.

#include <iostream>

using namespace std;

class Employee {

 public:

 int id; //data member (also instance variable)

 string name; //data member(also instance variable)

 float salary;

 Employee(int id, string name, float salary)

 {

 this->id = id;

 this->name = name;

 this->salary = salary;

 }

 void display()

 {

 cout<<id<<" "<<name<<" "<<salary<<endl;

 }

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 60 P.Revathy,AssistantProfessor

int main(void) {

 Employee e1 =Employee(101, "Sonoo", 890000); //creating an object of Employee

 Employee e2=Employee(102, "Nakul", 59000); //creating an object of Employee

 e1.display();

 e2.display();

 return 0;

}

Output:

101 Sonoo 890000

102 Nakul 59000

2.6 Friends to a class :

The concept of encapsulation and data hiding is that a non-member function should not be

allowed to access the private data members of that class.

In some situations, we would like to access the private data members of the class by using non-

member functions or to access the data members of one object through another object.

In these situations C++ allows the common functions to be made friends with the classes,

thereby allowing the friend functions to access the private data of these classes.

A friend function is a special function can access the private data of a class even though, it is not

a member function of that class.

If a function is defined as a friend function then the private and protected data of a class can be

accessed using that function.

The friend functions can be declared by using the keyword friend.

The function definition does not use either the keyword friend or scope resolution operator.

Syntax:

friend returntype functionname(classname objectname)

{

Body of a friend function;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 61 P.Revathy,AssistantProfessor

}

Example Program

#include<iostream>

using namespace std;

class add

{

private:

int a,b;

public:

int getdata()

{

cout<<”enter the values of a,b\n”;

cin>>a>>b;

}

friend int putdata(add s);

};

int putdata(add s)

{

int c;

c=s.a+s.b;

cout<<”The addition of a,b is ”<<c;

}

int main()

{

add x;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 62 P.Revathy,AssistantProfessor

 x.getdata();

putdata(x);

}

2.7Static Data Members:

A data member of a class can be qualified as static. A static member variable has certain special

characteristics:

1. It is initialized to zero when the first object of its class is created. No other initialization

is permitted.

2. Only one copy of that member is created for the entire class and is shared by all the

objects of that class, no matter how many objects are created.

 3. It is visible only within the class, but its lifetime is the entire program.

 4. Static data member is defined by keyword ‘static’

Syntax:

datatype classname::static variablename;

Static Member Functions :

Like static member variable, we can also have static member functions. A member function that

is declared static has the following properties:

A static function can have access to only other static members declared in the same class. A

static member function is to be called using the class name as follows:

Syntax:

 classname :: functionname;

Example Program

#include<iostream>

using namespace std;

class Demo

{

private:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 63 P.Revathy,AssistantProfessor

static int x; static int y; public:

static int print()

{

cout<<”Value of x= “<<x<<endl; cout<<”value of y= “<<y<<endl;

}

};

int Demo::x=10; int Demo::y=20; int main()

{

Demo OB;

cout<<”printing through object name: “<<endl; OB.print();

cout<<”printing through class name: “<<endl; Demo::print();

}

2.9 Constructors and Destructors:

Constructors:

 A constructor is a special member function whose task is to initialize the objects of its

class.

 It is special because its name is the same name as the class name.

 The constructor is invoked whenever an object of its associated class is created.

 It is called constructor because it constructs the values of data members of the class.

 A constructor does not have any return type.

 Constructors can be overloaded.

 Constructors should be declared in public section of a class.

Constructors are of 3 types:

1. Default Constructor

2. Parameterized Constructor

3. Copy Constructor

 Default Constructor:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 64 P.Revathy,AssistantProfessor

A constructor which has no arguments/parameters is called the default constructor.

Syntax:

 class classname();

Example Program: Write a C++ program to implement default constructor.

 #include<iostream>

using namespace std;

class add

{

private:

int a,b; public:

add();

int calculate(); int display();

};

add::add()

{ a=10; b=20;

}

int add::calculate()

{

int c; c=a+b;

}

int add::display()

{

cout<<”Addition of two numbers= ”<<c;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 65 P.Revathy,AssistantProfessor

int main()

{

add x;

 x.calculate();

x.display();

}

Parameterized constructor:

A constructor which takes some arguments/parameters is called parameterized constructors.

Example Program: Write a C++ program to implement parameterized constructor.

 #include<iostream>

using namespace std; class add

{

private:

int a,b; public;

add(int x,int y);int calculate(); int display();

};

add::add(int x ,int y)

{

a=x; b=y;

}

int add::calculate()

{

int c; c=a+b;

}

int add::display()

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 66 P.Revathy,AssistantProfessor

{

cout<<” Addition of two numbers= ”<<c;

}

int main()

{

add s(10,20);

s.calculate();

s.display();

}

Copy constructors:

It is used to copy the values of data members of one object into another object.

Example Program: Write a C++ program to implement copy constructor.

 #include<iostream>

using namespace std;

 class copyconst

{

private:

int a,b; public:

copyconst(int x,int y); int display();

};

copyconst::copyconst(int x,int y)

{

a=x; b=y;

}

int copyconst::display()

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 67 P.Revathy,AssistantProfessor

{

cout<<”a= “<<a<<”b= ”<<b<<endl;

}

int main()

{

copyconst s1(10,20); copyconst s2=s1; s1.display();

s2.display();

}

Destructors:

 Destructor is a special member function which is called / invoked when the object is

destroyed/deleted.

 Destructor is used to destroy the object as soon as the scope of object ends.

 Destructors should be same as class name but it is prefixed with ~ symbol.

 Destructors do not have any return type.

 Destructors cannot be overloaded.

 Destructor should be declared in public section of a class.

Syntax:

~classname();

2.10 Dynamic creation and destruction of objects:

The objects in C++ are dynamically created and destroyed by using new and delete operators.

(i) new Operator :

An object can be dynamically created by using a new operator that returns a pointer to it. A

default constructor is called for the newly created object.

A special pointer called a NULL pointer is returned by the new operator if the requested memory

is not available.

An object created by new is alive till delete is encountered.

General Form:

Pointer variable = new data type

Example:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 68 P.Revathy,AssistantProfessor

int *ptr = new int;

In the above example, ptr is a pointer variable of type ‘int’ created by using a ‘new’ operator.

Pointer variable declaration along with the initialization can be done as,

int *ptr = new int(10);

Applications:

1. It can be used along with the classes and structures to allocate the memory.

2. It can also be used for creating multidimensional array, where the size of the error must

be provided.

Advantages:

1. It finds the size of the object automatically without using the size operator.

2. Initializing the objects at the time of their declarations is allowed by the new operator.

Example Program:

#include<iostream.h>

#include <conio.h>

int main()

{

int *p; //declaration of an integer

// pointer variable

clrscr();

p=new int[15]; //allocation of memory for 15

//integer values

if(p=NULL)

cout<< "\n Memory space is released";

else

cout<< "\n Memory space is allocated”;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 69 P.Revathy,AssistantProfessor

getch();

return 0;

}

Output

(ii) delete Operator :

This operator is used to deallocate the memory which was allocated by the new operator thereby

destroying the object. The memory-is then released to the heap so that it can be utilized by some

other object.

General Form

delete pointer variable;

Example:

delete P;

For array,

delete [size] P;

Where,

size = size of the array ‘P’. If no size is specified then the entire array 'P’ gets deleted.

When delete statement is encountered it calls the destructor apart. from deallocating the memory.

Example Program:

#include<iostream.h>

#include <conio.h>

int main()

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 70 P.Revathy,AssistantProfessor

 int *p; //declaration of an integer

// pointer variable :

clrscr();

p=new int [15]; //allocation of memory for 15

//integer values

if(p==NULL)

cout<< "\n Memory space is released",

else

cout<< "\n Memory space is allocated";

delete p;//frees memory space allocation by new operator

getch();

return 0;

}

Output

2.11 Data Abstraction:

An abstraction is a process of showing relevant details and hiding irrelevant details from the user

i.e., the implementation details are completely hidden from the user.

It gives the representation of real-world entities thereby showing only important attributes from

the set of attributes.

To form groups from the set of attributes by using abstraction, then while forming the groups, the

common attributes have been neglected hence, abstraction reduces the group complexity by

simplifying its elements.

There are two types of abstraction. They are,

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 71 P.Revathy,AssistantProfessor

(i) Process abstraction

(ii) Data abstraction

(i) Process Abstraction:

It refers to the way in which the programs must specify some computational process has to be

done. without providing the details of computation.

All function/subprograms and exceptional handlers are the examples of process abstraction.

(ii) Data Abstraction:

It refer to the way of isolating the data implementation methods from its usage. All the data

members of an ADT are related to.data abstraction and the member functions to process

abstraction. These two abstraction types are related. to each other.

Example Program:

#include<iostream.h>

#include<conio.h>

class Sub

{

private:

int x,y,z;

public:

void subtraction()

{

cout<<"Enter two numbers:";

cin>>x>>y;

z = x-y;

cout<<"Subtraction is:"<<z;

}

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 72 P.Revathy,AssistantProfessor

void main()

{

Sub s;

clrscr();

s.subtraction();

getch();

}

Output:

In the above program, ‘x’,‘y’ and ‘z’ are the private data-members and the function is the public

member function. An object 's’ of type class is created in the main() function and then the

member function subtraction() is called by using the dot operator.

2.12 Abstract Data Type (ADT):

Abstract Data Type (ADT) is a data type that allows the programmer to use it without

concentrating on the details of its implementation.

A class can be treated as an abstract data type by separating its specification from the

implementation of its operations.

This separation between the specifications and the implementation can be obtained by,

(i) Considering and placing all the member variables in the private section of the class.

(ii) Placing all the needed operations in the public section and describing the ways of using these

member functions.

(iii) Considering all the helping functions as private member functions and placing them in

private section of the class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 73 P.Revathy,AssistantProfessor

 Table: Class as an ADT

The interface of an ADT specifies | how to use it in our program and consists of the public

member functions along with the accompanying comments that describes the way to use these

public member-functions.

The implementation of an ADT specifies the way to realize an interface as a C++ code and

consists of private members of a class and the definitions of both the private and public member

functions.

To use an ADT in our program, the only thing we need to know is its interface, but not its

implementation i.e., implementation is not required to write the main program.

2.13 Information hiding:

Information hiding means hiding the class member variables and member functions. The process

of hiding data involves hiding a class by declaring the data members and member functions

within a “private” section. Mostly, member variables are declared as private and member

functions as public. The data members that are declared as private cannot be accessed outside the

class. Thereby, security is provided to the data. These private members are accessed by using

public member functions. Generally, private and protected are the keywords that are used to

provide security. The data that is encapsulated can also be called as ADT (Abstract Data Types).

Information hiding is a process to build objects.

Example Program:

//Program to demonstrate information hiding is as given below,

#include<iostream.h>

#include<conio.h>

class Student

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 74 P.Revathy,AssistantProfessor

{

private:

int val1,val2;

int result;

public:

void calculate()

{

vall=20; .

val2=30;

result = vall+val2;

}

void display()

{

cout<<"The Entered values are:";

cout<<vall<<" "<<val2;

cout<<"\nSum is:"<<result;

}

};

int main()

{

Student stu;

clrscr();

stu.calculate();

stu.display();

getch();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 75 P.Revathy,AssistantProfessor

return 0;

}

Output

UNIT - III

Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base

and Derived classes, Access to the base class members, Base and Derived class construction,

Destructors, Virtual base class.

Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions,

Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual

functions, Abstract classes, Implications of polymorphic use of classes,Virtual destructors.

3. Inheritance:

1. Inheritance is the process by which the objects of one class can acquires the properties

of another class.

2. The mechanism of deriving a new class from an existing class is known as Inheritance.

3. The old class is called the super

class/base class/parent class.

 4. The new class is called the sub

class/derived class/child class.

5. The derived class can inherits/acquires the properties/attributes from

the base class.

3.1 Defining a class hierarchy:

In C++, it is possible to organize classes in the form. of a structure that corresponds to

hierarchical inheritance. All the child classes can inherit the properties of their parent classes. A

parent class that does not have any direct instance is called as an abstract class. It is used in the

creation of sub-classes.

Example:

Let, ‘Meher’ be a florist, but a florist is a more specific form of shopkeeper. Additionally, a

shopkeeper is a human and a human is definitely a mammal. But, a mammal is an animal and

animal is a material object.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 76 P.Revathy,AssistantProfessor

All these categories along with their relationships can be represented using a graphical technique

as shown in figure. Each category is regarded as a class.

Inheritance is nothing but a principle, according to which knowledge of a category or a class

which is more general car also be applied to a category or a class which is more specific.

 Figure: Class Hierarchy for Different Kinds of Material Objects

3.2 Different forms of Inheritance :

There are 5 types of inheritances in C++:

1.Single Inheritance

2.Multiple Inheritance

3.Multi Level Inheritance

4.Hierarchical Inheritance

5.Hybrid Inheritance

1.Single inheritance:

A single derived class can inherit the properties/attributes from single base class is called

single inheritance.

A

B

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 77 P.Revathy,AssistantProfessor

Syntax:

class baseclass

{

Body of base class;

};

class derived class:Accessspecifier baseclass

{

Body of derived class;

};

2.Multiple Inheritance:

In this type of inheritance a single derived class may inherit from two or more than two base

classes.

Syntax:

class baseclass1

{

Body of baseclass1;

};

class baseclass2

{

Body of baseclass2;

};

class derived class:Accessspecifier baseclass1,Accessspecifier baseclass2

{

Body of derived class;

};

3.Multi Level Inheritance:

When a derived class is inherited from a base class (or) A base class itself inherited from

a base class, then such inheritance is called multi level inheritance.

A B

C

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 78 P.Revathy,AssistantProfessor

Syntax:

class baseclass

{

Body of baseclass;

};

class derivedclass1:Accessspecifier baseclass

{

Body of derived class 1;

};

class derived class2:Accessspecifier derivedclass1

{

Body of derived class 2;

};

4.Hierarchical Inheritance:

Deriving of multiple derived classes from a single base class is known as hierarchical

inheritance.

A

B

C

A

B C D

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 79 P.Revathy,AssistantProfessor

Syntax:

class baseclass

{

Body of baseclass;

};

class derivedclass1:Accessspecifier baseclass

{

Body of derived class 1;

};

class derivedclass2:Accessspecifier baseclass

{

Body of derived class 2;

};

5.Hybrid Inheritance:

Hybrid inheritance is combination of two or more inheritances such as

single,multiple or multilevel inheritances.

Syntax:

class baseclass1

{

Body of baseclass1;

};

class derivedclass1:Accessspecifier baseclass1

{

Body of derivedclass1;

};

class baseclass2

{

Body of baseclass2;

};

class derivedclass2:Accessspecifier derivedclass1,Access specifier baseclass2

A

B C

D

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 80 P.Revathy,AssistantProfessor

{

Body of derivedclass2;

};

3.3 Defining the Base and Derived classes :

Base Class:

A base class is a class in Object-Oriented Programming language, from which other classes are

derived. The class which inherits the base class has all members of a base class as well as can

also have some additional properties. The Base class members and member functions are

inherited to Object of the derived class. A base class is also called parent class or superclass.

Derived Class:

A class that is created from an existing class. The derived class inherits all members and member

functions of a base class. The derived class can have more functionality with respect to the Base

class and can easily access the Base class. A Derived class is also called a child class or subclass.

Syntax for creating Derived Class:

class BaseClass{

 // members....

 // member function

}

class DerivedClass : public BaseClass{

 // members....

 // member function

}

3.4 Accessing of Base class members:

The base class members can be accessed by its sub-classes through access specifiers. There are

three types of access specifies. They are public, private and protected.

1. Public:
When the base class is publicly inherited, the public members of the base class become the

derived class public members.

They can be accessed by the objects of the derived class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 81 P.Revathy,AssistantProfessor

 Figure: Publicly Inherited Base Class

Syntax:

class classname

{

public:

datatype variablename;

returntype functionname();

};

2. Protected:

When the base class is derived in protected mode, the ‘protected’ and ‘public’ members of the

base class become the protected members of the derived class.

Private and protected members of a class can be accessed by,

(i) A friend function of the class.

(ii) A member function of the friend class.

(iii) A derived class member function.

 Figure: Protected Derivation of the Base Class

Syntax:

class classname

{

protected: :

datatype variablename;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 82 P.Revathy,AssistantProfessor

returntype functionname();

};

3. Private :

When a base class contains members, that are declared as private, they cannot be accessed by the

derived class objects. They can be accessed only by the class in which they are defined.

 Figure: Privately inherited Base Class

Syntax:

class classname

{

private:

datatype variablename;

returntype functionname();

};

Example Program:

#include <iostream>

using namespace std;

class A

{

public: pub()

{

cout << “In Public() \n”;

}

protected: prot()

{

cout << “In Protected() \n”;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 83 P.Revathy,AssistantProfessor

}

private: priv()

{

cout << “In Pivate() \n”;

}

};

class C : public A

{

public:

void display1()

{

cout<< “In C::display1 call\n”;

pub();

}

void display2()

{

cout << “In C::display2 call\n”;

prot();

}

/*pri(Q is a private member of class A. Therefore it is an illegal access

void display3()

{

cout<<“In C::display3 call\n”;

priv();

} */

}

main()

{

C obj;

obj.pub();

// obj.prot(); illegal because it is declared as protected in class A

// obj.private(); illegal because pri() isa private member of class A

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 84 P.Revathy,AssistantProfessor

obj.display1();

obj.display2();

}

Output

3.5 Base and derived class construction:

(i)Base Class:

Base class is a class from which other classes can be inherited. It is also called as a ‘super class’

or a ‘parent class’. This class does not have any knowledge about its sub-classes. It is constant

and cannot be changed. Any number of classes can be derived from a base class.

It is declared or defined before the derived class. The Base class members can be accessed from

the derived class. It is used in creating the classes which reuse the code that is inherited from the

base class. There are 2 types of base classes in C++.

They are as follows,

(a) Direct Base Class

(b) Indirect Base Class

(ii) Derived Class :

Derived class is a class that is inherited from a base class. It can inherit all the properties and

behavior of the base class. It contains additional members apart from having base class members.

It is also called as a ‘subclass’ or a ‘child class’.

It has access to public and protected numbers of base class. It can define its own functions to

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 85 P.Revathy,AssistantProfessor

override the base class function. It can communicate with base class by calling the base class

constructor.

Example :

In the above figure, vehicles is the Base class and the type of vehicles i.e., Car and Bus are

derived class members. The derived classes car and Bus inherit the properties of Base class

vehicle.

Syntax :

class Baseclass

{

};

class Derivedclass: AccessSpecifier Baseclass

{

https://1.bp.blogspot.com/-bcAskBG2eZk/Xw-z15DKqMI/AAAAAAAAJRQ/NOBEyd8358gNP_tEhyG1MJxPBKjJLUBIgCLcBGAsYHQ/s1600/IMG_20200703_0017.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 86 P.Revathy,AssistantProfessor

};

Example Program:

#include<iostream.h>

#include<conio.h>

class Base

{

public:

int a;

};

class Derived : public Base

{

public:

int b;

};

int main()

{

clrscr();

Derived q;

q.a= 10;

q.b = 50;

cout<<“\n Member of Base class is:” <<q.a;

cout<<“\n Member of Derived class is:” <<q.b;

getch();

return 0;

}

Output:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 87 P.Revathy,AssistantProfessor

3.6 Destructors:

A destructor is a special member function that is used to destroy the objects created by

constructor. It takes the same name as the class but with a ‘tilde’ (~) at the beginning. It doesn’t

have any return type. It is called automatically at the end of the program execution to free up the

acquired storage.

Memory allocation is done by using new operator in a constructor whereas delete operator is

used in a destructor to deallocate the previously allocated memory.

3.7 Virtual Base class:

C++ has introduced the keyword ‘virtual’ to avoid the ambiguity that takes place by multipath

inheritance. When the word virtual is used before the name of a class, it specifies that the class is

virtual and indicates the compiler to take some essential caution in order to prohibit the

duplication of member variables. Always a base class is declared as virtual, because it is the class

from which other classes are derived. Thus, virtual base class is a class in which virtual keyword

is placed before the name of base class while it is inherited.

3.8 Virtual functions and polymorphism:

3.8.1 Static and dynamic binding:

Static Binding:

Static binding or early binding is achieved through function overloading or operator overloading.

Members with same name possessing different arguments are known to the compiler during

compilation time. They help the compiler to find the function definition with appropriate

function call. This type of binding is also called compile time binding.

Example Program:

class A //base class

{

inti;

public:

void display() //base class member function

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 88 P.Revathy,AssistantProfessor

}

};

class B: public A // derived class.

{

int j:

public:

void display() // member function of derived class

{

}

};

In this example, both base class and derived class have same member function display()

However, the addresses for these functions are different. When these functions are invoked, the

control jumps to various addresses of those member

functions. ‘

Example Program:

#include<iostream.h>

#include<conio.h>

class Add

{

public:

void sum(int a, int b)

{

cout<<a+b;

}

void sum(int a, int b, int c)

{

cout<<a+b+c;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 89 P.Revathy,AssistantProfessor

};

void main()

{

clrscr();

Add obj;

obj.sum(10, 20);

cout<<endl;

obj.sum(10, 20, 30);

}

Output:

Dynamic Binding :

Dynamic binding or late binding binds a function definition to an appropriate function call

during run time. This type of binding is also called run time binding. Dynamic binding of

member functions is achieved using virtual keyword.

Example Program:

class A //base class

int i;

public:

virtual void display() //base class member function

{

}

};

class B : public A //derived class

{

int j;

public:

virtual void display() //member function derived class

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 90 P.Revathy,AssistantProfessor

{

}

};

In this example, both base class and derived class has same member function display() declared

using “virtual” keyword.

The virtual function must be defined in the public section. The system recognizes this and

performs dynamic binding. It detects all the references from the base class and assumes that the

virtual functions in derived class match with the base class functions (parameter and parameter

type). If they do not match then functions are assumed as overloaded functions.

(ii) Runtime Polymorphism :

In this type of polymorphism, the most appropriate member function is called at runtime i.e.,

while the program is executing and the linking of function with a class occurs after compilation.

Hence, it is called late binding or dynamic binding. It is implemented using virtual functions and

the pointers to objects.

Example Program:

#include<iostream.h>

#include<conio.h>

class Baseclass

{

public:

virtual void show()

{

cout<<“Base class \n”;

}

};

class Derivedclass: public Baseclass

{

public:

void show()

{

cout<<“\n Derived class \n”;

}

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 91 P.Revathy,AssistantProfessor

int main(void)

{

clrscr();

Baseclass *bp = new Derivedclass;

bp→show(); // RUN-TIME POLYMORPHISM

getch();

return 0;

}

Output

3.8.2 Virtual functions :

A C++ virtual function is a member function in the base class that you redefine in a derived

class. It is declared using the virtual keyword.

It is used to tell the compiler to perform dynamic linkage or late binding on the function.

There is a necessity to use the single pointer to refer to all the objects of the different classes. So,

we create the pointer to the base class that refers to all the derived objects. But, when base class

pointer contains the address of the derived class object, always executes the base class function.

This issue can only be resolved by using the 'virtual' function.

A 'virtual' is a keyword preceding the normal declaration of a function.

When the function is made virtual, C++ determines which function is to be invoked at the

runtime based on the type of the object pointed by the base class pointer.

Rules of Virtual Function:

o Virtual functions must be members of some class.

o Virtual functions cannot be static members.

o They are accessed through object pointers.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 92 P.Revathy,AssistantProfessor

o They can be a friend of another class.

o A virtual function must be defined in the base class, even though it is not used.

o The prototypes of a virtual function of the base class and all the derived classes must be

identical. If the two functions with the same name but different prototypes, C++ will

consider them as the overloaded functions.

o We cannot have a virtual constructor, but we can have a virtual destructor

Example of C++ virtual function used to invoked the derived class in a program.

#include <iostream>
{
 public:
 virtual void display()
 {
 cout << "Base class is invoked"<<endl;
 }
};
class B:public A
{
 public:
 void display()
 {
 cout << "Derived Class is invoked"<<endl;
 }
};
int main()
{
 A* a; //pointer of base class
 B b; //object of derived class
 a = &b;
 a->display(); //Late Binding occurs
}

Output:

Derived Class is invoked

3.8.3 Dynamic binding through virtual functions:

Dynamic binding in C++ can be implemented using virtual functions and polymorphism. Using

virtual functions, we can declare a base class (parent class or superclass), and the derived classes

can be used to override them.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 93 P.Revathy,AssistantProfessor

#include <iostream>
using namespace std;

class base {

public:

 virtual void print() { cout << "print base class\n"; }

 void show() { cout << "show base class\n"; }

};

class derived : public base {

public:

 void print() { cout << "print derived class\n"; }

 void show() { cout << "show derived class\n"; }

};

int main()

{

 base* bptr;

 derived d;

 bptr = &d;

 // Virtual function, binded at runtime

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

 return 0;

}

Output

print derived class

show base class

Explanation: Runtime polymorphism is achieved only through a pointer (or reference) of the

base class type. Also, a base class pointer can point to the objects of the base class as well as to

the objects of the derived class. In the above code, the base class pointer ‘bptr’ contains the

address of object ‘d’ of the derived class.

Late binding (Runtime) is done in accordance with the content of the pointer (i.e. location

pointed to by pointer) and Early binding (Compile-time) is done according to the type of pointer

since the print() function is declared with the virtual keyword so it will be bound at runtime

(output is print derived class as the pointer is pointing to object of derived class) and show() is

non-virtual so it will be bound during compile time (output is show base class as the pointer is of

base type).

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 94 P.Revathy,AssistantProfessor

Note: If we have created a virtual function in the base class and it is being overridden in the

derived class then we don’t need a virtual keyword in the derived class, functions are

automatically considered virtual functions in the derived class.

3.8.4 Virtual functions call mechanism:

Virtual function call is usually implemented as an indirect function call through a per class table

of function that are generated by compiler. Virtual function must be called by specifying objects

pointed by the base pointers, so that it determines which function to be invoked. As the virtual

function that is defined in base class is not required be to defined in derived class. Otherwise, the

virtual function of base class will be used by default in all calls. If a virtual function is called

through pointer or reference the actual object type is not known. For this reason, virtual function

call mechanism is used.

Syntax:

class Base Class

{

public:

virtual void function name() // Virtual function definition

{

//statements

}

};

main()

{

Base_class pointer object;

pointer object → virtual function(); //Virtual function Call mechanism

}

In the above Syntax, virtual function is defined in base class. In the main function, the virtual

function is called by using base class pointer.

Example Program:

#include<iostream.h>

#include<conio.h>

class X

{

int x;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 95 P.Revathy,AssistantProfessor

public: 2

X()

{

x=15;

}

virtual void display()

{

cout<<“\n x=”<<x;

}

};

class Y: public X

{

int y;

public:

Y()

{

y = 25;

}

void display()

{

cout<<"\ny="<<y;

}

};

int main()

{

clrscr();

Y k;

b = &a;

b → display();

b = &k;

b → display();

getch();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 96 P.Revathy,AssistantProfessor

return 0;

}

Output

3.8.5 Pure Virtual Function:

A pure virtual function (or abstract function) in C++ is a virtual function for which we can have

an implementation, But we must override that function in the derived class, otherwise, the

derived class will also become an abstract class. A pure virtual function is declared by assigning

0 in the declaration. They are also called as “do-nothing” functions as their definitions are empty

and they are of the form,

 virtual void display() = 0;

The display() in the above declaration is a pure virtual function with no definition relative to the

base class. The assigned operator does not specify that zero is assigned to this function, instead it

is used to tell the compiler that the declared function is a pure virtual function and that it will not

have a definition.

Example of Pure Virtual Functions:

// An abstract class

class Test {

 // Data members of class

public:

 // Pure Virtual Function

 virtual void show() = 0;

 /* Other members */

};

Complete Example:

A pure virtual function is implemented by classes that are derived from an Abstract class.

// C++ Program to illustrate the abstract class and virtual functions

#include <iostream>

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 97 P.Revathy,AssistantProfessor

using namespace std;

class Base {

 // private member variable

 int x;

public:

 // pure virtual function

 virtual void fun() = 0;

 // getter function to access x

 int getX() { return x; }

};

// This class inherits from Base and implements fun()

class Derived : public Base {

 // private member variable

 int y;

public:

 // implementation of the pure virtual function

 void fun() { cout << "fun() called"; }

};

int main(void)

{

 // creating an object of Derived class

 Derived d;

 // calling the fun() function of Derived class

 d.fun();

 return 0;

}

Output:

fun() called

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 98 P.Revathy,AssistantProfessor

Example Program:

#include<conio.h>

#include<iostream.h>

class SIAgroup

{

public:

virtual void demo() = 0;

};

class B-tech: public SIAgroup

{

public:

void demo()

{

cout<<“B.tech AIO published by SIAgroup”;

}

};

class B.com: public SIAgroup

{

public

void demo()

{

cout<<“B.com materials published by, SIAgroup”;

}

};

class Polytechnic: public SIAgroup

{

public

void demo():

{

cout<<“Polytechnic materials published by SIAgroup”;

}

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 99 P.Revathy,AssistantProfessor

void main()

{

SlAgroup* array[3];

B.tech sl;

B.com s2;

Polytechnic s3;

array[0] = &s1;

array[1] = &s2;

array[2] = &s3;

array[0] → demo();

array[1] → demo();

array[2] → demo();

}

Output :

3.8.6 Abstract Classes:

Abstract classes are the classes that contain only function declaration, but not its definition. That

is, it provides just the skeleton of the class hiding the implementation details. These classes are

extendable and can even contain virtual functions, which help the programmer to debug the bugs.

Abstract classes are defined in'a header file called abstract.h.

Example Program:

#include <iostream.h>

#include <conio.h>

const int max = 80;

class first

{

protected:

char name[max];

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 100 P.Revathy,AssistantProfessor

char cls[max];

public:

virtual void insert()=0;

virtual void show()=0;

}

class second : public first

{

protected:

int fees;

public:

void insert()

{

cout<<“Name”;

cin>>name;

cout<<“Class”;

cin>>cls;

cout<<“Fees”;

cin>>fees;

}

void show()

{

cout<<“\nName:”<<name<<“\n”;

cout<<“Class:”<<cls<<“\n”;

cout<<“Fees:”<<fees<<"\n”’;

}

};

void main()

{

clrscr();

second s1;

sl.insert();

sl.show();

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 101 P.Revathy,AssistantProfessor

getch();

}

Output :

3.8.7 Implications of polymorphic use of classes:

The programmer must be aware of some of the problems encountered while programming

because the polymorphic use of class instances.will force to manipulate the objects either

through pointers or references. Some of the problems are discussed as follows,

Declaring Destructor as Virtual :

Manipulation of objects through pointers require them to be created dynamically by using new

operator and later on delete them through delete operator. Consider the below example,

class A

{

public A()

cout << “BaseClass Constructor” <endl;

}

~A()

{

cout << “Base Class Destructor” < endl;

};

class B: public A

{

public:

B()

{

cout << “Derived class constructor” << endl;

}

~B()

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 102 P.Revathy,AssistantProfessor

{

cout << “Derived class destructor” <<endl;

}

};

main()

{

A* a=new B;

delete a;

}

In the above example, a copy of derived class is created in main() by using the new operator and

destroyed later on by using the delete operator. The output of this program is as shown below,

Baseclass constructor

Derived class constructor

Baseclass destructor.

The output is displayed based on the order in which the constructors are called.

The output does not show the destructor of derived class.This is because the derived class name

is used with new operator to call the constructor, so the compiler created the specified object.

The variable ‘a’ holds the pointer to base class. When this variable is defined with operator

delete, the compiler could not predict that the programmer wants to destroy the derived class

instance. This problem can be solved by declaring the destructor of base class as virtual. Now the

destructor gets invoked through the virtual function table and the respective destructor will be

called.

virtual ~A()

{

cout << “Baseclass Destructor” <<endl;

}

The output of the program when the above code is executed will be as shown below,

Base class constructor

Derived class constructor

Derived class destructor

Base class destructor.

Calling Virtual Functions in a Base class Constructor

The virtual functions may not work as expected some times. The undesired output of the virtual

function call might result from the base class constructor. This problem is depicted by the below

code,

class A

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 103 P.Revathy,AssistantProfessor

{

public:

A()

{

cout << “Base class constructor calls clone()” <<endl;

clone();

}

virtual void clone()

{

cout<< “Base class clone() called” <<endl;

}

};

class B: public A

{

public:

B()

{

cout << "Derived class constructor calls clone()" <<endl;

}

void clone()

{

cout << “Derived class clone() called” <<endl;

}

};

main()

{

Bb;

A*a=&b;

cout << “Call to clone() through instance pointer” <<endl;

a→clone();

}

The output of above code is as follows:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 104 P.Revathy,AssistantProfessor

Baseclass constructor calls clone()

Base class clone() called

Derived class constructor calls clone()

Call to clone() through instance pointer

Derived class clone() called

As shown in the above output, the base class constructor is called first when a derived class

instance is created. The derived class instance gets initialized partially. So, the compiler cannot

bind the call to clone for derived class when virtual function clone() is called. Therefore, the

compiler calls the clone() from base class.

The last two lines of output indicate that clone() function for derived class instance can be

invoked using base class pointer upon object creation. This behavior is common in polymorphic

use of virtual functions. The last line indicates that the compiler invokes base class version of

function rather than that of derived class when virtual function is called in class constructor.

3.8.8 Virtual Destructor:

Virtual destructor is created by placing virtual keyword before a destructor. Its implementation is

similar to the implementation of virtual constructors. The hierarchy of base and derived classes is

created in constructors and destructors. From this hierarchy, derived and base class object

reference by base class pointer when a derived class object is constructed using a new operator,

It's address is stored in base class pointer object. This base class pointer object is destructed by

using delete operator by invoking this operator.

Example Program:

#include<conio.h>

#include<iostream.h> .

class P

{

public:

P()

{

cout<<endl<<‘“ClassP constructor”;

}

virtual ~P()

{

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 105 P.Revathy,AssistantProfessor

cout<<endl<<ClassP destructor’;

}

};

class Q : public P

{

public:

Q()

{

cout<<endl<<“ClassQ constructor”;

}

~Q()

{

cout<<endl<<“ClassQ destructor”;

}

};

void main()

{

clrscr();

P*ptr;

ptr=new Q;

delete ptr;

getch();

}

Output :

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 106 P.Revathy,AssistantProfessor

UNIT- IV

C++ I/O: I/O using C functions, Stream classes’ hierarchy, Stream I/O, File streams and

String streams, Overloading operators, Error handling during file operations, Formatted

I/O.

4.C++ I/O :

Stream:

A stream can be defined as an interface between user and I/O devices. The I/O devices such as

keyboard, disk, tape driver and monitor provides a source to perform I/O operations which include

read and write operations. To perform I/O operations, I/O stream functions are mandatory and these

functions are available in standard C++ library.

A standard library contains, .obj files and they are included in the program to perform various I/O

operations. These operations provide portability to the program.

A stream can also be defined as flow of data. The flow can be calculated in terms of bytes in

sequential manner. There are two types of streams, such as source stream and destination stream.

The source stream receives data from the input devices such as keyboard and the data is considered

as input data. Therefore, the other name for source Stream is given as input stream. On the

otherhand, the destination stream collects data from the program and passes to output devices such

as monitor. Therefore, the other name of destination stream is output stream.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 107 P.Revathy,AssistantProfessor

Figure: Block Diagram of 1/0 Devices and Streams

Figure: Block Diagram to Represent C++ Input and Output Streams

The input devices such as keyboard or’storage devices (hard disk, floppy disk) pass input data to

input stream and output devices such as monitor or printer receive the output data from output

stream.

4.1 I/O using C functions:

Formatted Input-output Functions
Input and output operations are performed using predefined library functions.

There are two formatted input/output functions.

(a) scanf(): Used for formatted input and

(b) printf(): Used to obtain formatted output

(a) scanf()

This function is used to read values for variables from keyboard.

Syntax

scanf(“control string”, address_list);

(i) Control String

Control string is enclosed within double quotes.

It specifies the type of values that have to be read from keyboard.

Control string consists of field specification written in the form.% field specification.

Field formats for different data types are given below,

Format Type of Value

%d

%f

Integer

Floating Numbers

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 108 P.Revathy,AssistantProfessor

%c

%ld

%u

%lf

%s

%ox

%o

%i

%e

%g

Character

Long Integer

Unsigned Integer

Double

String type

Hexadecimal

Octal

 Decimal or Hexadecimal or Octal

Floating point number in exponential form

Floating point number with trailing zeros truncated

(ii) Address_list

It contains addresses of input/output variables preceded. The addresses are specified by preceding a

variable by ‘&’ operator.

Examples
1. scanf(“%d %f c”, &i, &a, &b);

When user enters 10, 5.5, ‘z’ from keyboard, 10 is assigned to i, 5.5 is assigned to a and ‘z’ is

assigned to b.

2. scanf (“%3d %2d”, &a, &b);

If input is 500 and 10, then 500 is assigned to a and 10 is assigned to b

3. It is not always advisable to use field width specifiers in scanf statements. It may sometimes

assign wrong values to variables as shown in example below.

scanf(“%2d-%3d”, &a, &b);

Here, if 5004 and 10 is input, then 50.is assigned to a and 04 to 6 which is wrong assignment.

Hence, generally field widths are not used with scanf statement.

(b) printf()
printf() function is used to print result on-monitor.

Syntax
printf(“control string”, arg1, arg2,...., argn);

(i) Control string can have,

Format specifier given in the form % specifier

Escape sequence characters such as \t (tab), \n (new line), \b (blank) etc.

It can have a string that must be printed on console i.e., monitor.

(ii) arg1, arg2......, argn are variables whose values must be printed on the monitor in the format

specified in control string.

Examples

1. printf(“%d %c”, num, ch);

2. printf(‘“hello world”);

3. printf(“%d \n %c”, num, ch);

In example 3, suppose num has value 5 and ch has value ‘a’ then output will be printed as,

5

a

The output is printed in two different lines because new line character has been used between %d

and %c.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 109 P.Revathy,AssistantProfessor

4.2 stream class hierarchy:

Stream Classes:

Stream classes are set of classes, whose functionality depends on console file operations. The

stream classes are declared in header file “iostream.h”. It is mandatory for a programmer to include

this header file, whenever a program is written using the functions supported by these stream

classes.

Figure (a): Stream Classes Hierarchy

Figure (a) represents the hierarchy of stream classes.

From the above hierarchical structure it can be inferred that,

(i) ios is the parent class

(ii) istream, ostream are child classes

(iii) iostreambuffer is a member variable object of ios

(iv) The iostream class is a child class of both istream class and ostream class.

The other streams include classes istream_withassign, Ostream_withassign and

iostream_withassign. They are used to append the required assignment operators.

Figure (b): Other Stream Classes

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 110 P.Revathy,AssistantProfessor

Types of Stream Classes

The different stream classes include,

(a) iso

(b) istream

(c) ostream

(d) iostream

(e) istream_withassign

(f) ostream_withassign

(g) iostream_withassign.

(a) ios

ios is an input and output stream class, that performs both formatted and unformatted I/O

operations. This class basically is a pointer that points to a buffer iostreambuffer. Moreover, the

information related to the state of iostream buffer is maintained by ios stream class.

(b) istream

istream is a derived class of ios stream class which is used to manage both formatted data and

unformatted data that is available streambuf object. In addition to that, istream provides input of

formatted data properties of istream.

Properties of istream

(i) The istream class overloads the extraction operator (>).

(ii) It declares functions like peek(), tellg(), seekg(), getline(), read().

(c) ostream

ostream is a output stream class derived from ios class. This class handles the formatting of output

data and is used to provide general purpose output.

Properties of ostream

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 111 P.Revathy,AssistantProfessor

(i) The ostream class overloads the insertion operator(<<).

(ii) It declares functions like tellp(), put(), write(), seek().

(d) iostream

iostream is the derived class of istream and ostream and therefore supports all the functions of its

base classes. It is an input and output stream that is used to manage both input and output

operations.

(e) istream_withassign

istream_withassign is a stream class derived from istream class and is used while providing input

using cin object.

(e) ostream_withassign

ostream_withassign is a stream class derived from ostream Class and is used while generating

output using cout.

(g) iostream_withassign

iostream_withassign is a combination of both istream_withassign and ostream_withassign and it

can be called as bidirectional stream.

4.3 Stream I/O:

I/O streams are used to perform input and output operations on the program. I/O streams include

two types of streams.

They are as follows,

(a) Input stream

(b) Output stream.

(a) Input Stream

The input stream is used to read input through standard input device, keyboard. It uses a predefined

stream object cin to perform the console read operation.

The cin object uses extraction operator (>>) to perform the input operation and this operator is

stored in istream class.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 112 P.Revathy,AssistantProfessor

Syntax

cin>> variable_name;

Example

char varl;

float var2;

int var3;

cin>> varl >> var2 >> var3;

Here varl, var2, var3 are different variables declared with different datatype. After the execution of

declarative statements, memory is allocated for every variable. When cin statement is executed,

input stream requests for the input. If the input is N 10.0 30, then the char value N is assigned to the

variable var, the float value 10.0 is assigned to var2 and the int value 30 is assigned to var3.

If the given input is greater than the size of corresponding data type, the input remains in input

stream. The data value of every variable is accepted through extraction operator >>. This operators

reads the data values and stores the value in memory locations of that respective variable.

Cascading Input Operations

Cascading input operation is an input operation that allows more than one variable to read- input

data. And, each variable in cin statement uses extraction operator. These variables must be

separated with space, tab or enter.

(b) Output Streams

The output stream is used to control the output through standard output devices, monitor. It uses a

predefined stream object cout to display the output. The cout object use insertion operator << to

perform the console write operation and this operator is stored in ostream class.

Syntax

cout <<“output statement”;

cout << variable_name;

Example

cout <<“Hello world”;

cout<<varl, var2,;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 113 P.Revathy,AssistantProfessor

Where, varl, var2, are variables.

In the above example, the first ‘cout’ statement displays the same text “Hello world” on to the

screen. The second ‘cout’ statement displays the corresponding values of the variables varl, var2,

......

Program

#include <iostream.h>

#inelude <conio.h>

int main()

{

char stdId[10];

char stdName[20];

clrscr();

cout <<Enter student id” <<endl;

cin >> stdId;.

cout <<“Student ID is:” <<stdId;

cout <<endl; //breaks the line

cout <<“Enter student name:”;

cin >> stdName;

cout <<“Student name is:” << stdName;

getch();

return 0;

Output

Enter student id:SOGC0225

Student Id is : SOGC0225

Enter student name : Nymisha

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 114 P.Revathy,AssistantProfessor

Student name is : Nymisha

While reading string values, unwanted blanks spaces between characters are not allowed. In C++,

format specifiers such as %f, %d, %u are not required.

4.4 File streams and String streams:

File streams:

Types of File Stream Classes

A file is a collection of related data stored in particular area on the disk.

The data transfer can take place in two ways,

1. Data transfer between the console unit and the program.

2. Data transfer between the program and a disk file.

File streams are used to transfer data between program and a disk file. Therefore a file stream acts

as an interface between the programs and the files. The file stream I/O operations are similar to,

consolestream I/O operations, The stream that provides the data to the program is called as an input

stream and the stream that is used to receive the data from the program is called as an output

stream. An input stream is used to extract the data from a file and an output stream is used to insert

the data to a file. Performing input operations on file streams requires creation of an input stream

and linking it with the program and the input file. Similarly performing output operations on file

streams requires establishment of an output stream with the necessary links with the program and

the output file.

The figure below shows the file stream hierarchy.

Figure: File Stream Class Hierarchy

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 115 P.Revathy,AssistantProfessor

C++ contains several classes that are used to perform file I/O operations. These are ifstream,

ofstream and fstream classes which are derived from fstream base class and iostream class. The file

stream classes are declared in the header file “fstream.h”.

1. ifstream Class

This class supports input operations on the files. It inherits the functions get(), getline(), read(),

seekg() and tellg() from istream class. When the file is opened in default mode, it contains open()

function.

The functions of ifstream class are discussed below,

(i) get()

This function is used to read a single character from the file. The get pointer specifies the character

which has to be read from the file. This function belongs to fstream class.

(ii) getline()

This function reads a line of text which ends with a newline character. It cam be called using cin

object as follows,

cin.getline(line, size)

Where line is a variable that reads a line of text.

Size is number of characters to be read getline() function reads the input until it encounters ‘\n’ or

size ⎼1 characters are read. When ‘\n’ is read. it is not saved instead it is replaced by the null

character.

(iii) read()

This function reads a block of data of length specified by an argument ‘n’. This function reads data

sequentially. So when the EOF is reached before the whole block is read then the buffer will

contain the elements read until EOF.

General syntax,

istream & read(char*str, size n);

(iv) seekg()

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 116 P.Revathy,AssistantProfessor

This function is used to shift the input pointer (i.e., get) to the given location. It belongs to ifstream.

It is a file manipulator.

(v) tellg()

This function is used to determine the current position of the input pointer. It, belongs to ifstream

class.

2. ofstream Class

This class supports output operations on the files. It inherits the functions put(), seekp(), tellp() and

write() from ostream class. When the file is opened in default mode, it also contains the open()

function.

The functions of ofstream class are discussed below,

(i) put();

This function is used to write a single character to the file. A stream object specifies to which file

the character should be written. The character will be located at the position specified by the put

pointer. This function belongs to fstream class.

(ii) . seekp()

This function is used to shift the output pointer (i.e., put) to the given location. It belongs to

ofstream class. It is also a file manipulator.

(iii) tellp()

This function is used to determine the current position of the output pointer. It belongs to ofstream

class.

(iv) write()

This function displays a line on the screen. It is called using cout object as follows,

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 117 P.Revathy,AssistantProfessor

cout.write(line, size)

Where line is the string to be displayed.

Size is the number of characters to be displayed.

If the size of string is greater than the line (i.e., text to be displayed) then write() function stop

displaying on encountering null character but displays beyond the bounds of line.

(3) fstream Class

This class provides support for both input and output operations on the files at the same time. It

inherits all the member functions of the istream and ostream classes through iostream class. when a

file is opened in default mode, it also contains open() function.

(4) fstream Baseclass

This is the base class for ifstream, ofstream and fstream classes. It provides the operations that are

common to the file streams. It contains open() and class() functions.

(5) filebuf Class

This class is used to set the file buffers to read and write operations. it contains the functions open()

and close(). It also contains a constant named Openport which is used

in opening of file stream classes using open() function.

(i) open()

This function is used to create new files as well as open existing files.

General Form

Stream-object open (“file name”, mode);

Where, ‘mode’ specifies the purpose of opening a file. This ‘mode’ argument is optional, if it is not

given, then the prototype of member functions of the classes ifstream and ostream uses the default,

values for this argument. The default value are,

ios ∷ in for ifstream functions i.e., open in read only mode

and ios ∷ out for ofstream functions i.e., open.in write only mode.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 118 P.Revathy,AssistantProfessor

(ii) close()

A file can be closed using member function close(). This function neither takes any parameter nor

returns any value.

Syntax

stream_name.close();

Here,

stream_name is the name of the stream to which file is linked.

String streams:

Hierarchy of string streams is as shown in the below figure,

String Streams

The figure below shows the hierarchy of string streams.

Figure: Hierarchy of String Streams

C++ provide the following classes to perform string streams i.e., I/O operations on string. These

classes are declared in the <stream.h> header file. These classes are,

istringstream Class

This class support input operations on the strings. This class inherits all the properties of istream

class.

https://1.bp.blogspot.com/-QojpFyybhxo/XyDbTSbQWDI/AAAAAAAAJWc/3McUffih64U4sNFNuMMbmmj0SWunQWtOwCLcBGAsYHQ/s1600/IMG_20200726_0016.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 119 P.Revathy,AssistantProfessor

ostringstream Class

This class support output operations on the strings. It inherits all the properties of ostream class.

stringstream Class

This class provides support for both the input and output operations on the strings at the same time.

It is derived from the iostream class. So it inherits all the properties of iostream class.

stringbuf Class

This class is used to set the string buffers to read and ‘write operations. That is this class provides

virtual functions for I/O operations.

The following steps are required to read strings from stream,

1. First create the input string stream object of istringstream class.

2. Read the string passed as an argument to str() function into istring stream object.

The following steps are required to write strings to streams,

1. First create the output string stream object of ostream class.

2: Write the string from string stream using str() function.

For example, the following reads and writes strings into string stream.

#include<sstream.h>

int a, b;

string s = “44, 90”;

istringstream iss; // Create input string stream

iss.str(s); // Specify string to read

iss>>a>>b; // Read strings.

ostring stream oss; // Declare output string stream

oss<<sqrt (b);

s = oss.str(); // Get created string from output stream

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 120 P.Revathy,AssistantProfessor

Figure: Hierarchy of String Streams

C++ provide the following classes to perform string streams i.e., I/O operations on string. These

classes are’declared in the <stream.h> header file. These classes are,

(i) istringstream class

(ii) ostringstream class

(iii) stringstream class

(iv) stringbuf class.

4.5 Overloading operators:

In C++, the operator << is called an insertion operator because it inserts the characters into a stream

and the operator >> is called an extraction operator because it extracts characters from a stream.

Like other operators such as +, —, *, etc. the operators >> and << can/also be overloaded. The

functions that overload the insertion and extraction operators are called inserter and extractor

respectively.

The prototypes definition for insertion (<<) and extraction (>>) operators are shown below.

Prototypes:

friend istream& operator>>(istream& streamobj, ClassName& classobj);

friend ostream& operator<<(ostream& streamobj, const ClassName& classobj);

 Definitions

istreams& operator>>(istream& streamobj, ClassName& classobj)

{

// code

}

ostream& operator<<(ostream& streamobj, const ClassName& classobj)

{

/ code

}

Extraction Operator Overloading

The statement cin >> obj; is a statement that overloads the operator >>, like any other operator such

as ‘+’ operator, >> operator has two operands, one is cin i.e., the object of input stream and the

other operand is an object of a class that receives the input value. Therefore the second argument

passed to an overloaded operator >>() function must be a call by reference parameter. The purpose

of this statement is to accept an input from the keyboard. When this statement is executed it calls

the operator >>() function. The value returned by this function is an objegt of an input stream

(istream).

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 121 P.Revathy,AssistantProfessor

Insertion Operator Overloading

The statement cout<<“Hello”; is an overloaded statement that overloads the operator <<. This

operator also has two operands cout (object of output stream) and a string “Hello”. The second

operand may be either a string, a variable or a number.

The purpose of this statement is to print the string “Hello” to the screen. When this statement is

executed it calls the overloaded operator >>() function. The value returned by this function is an

object of the output stream (ostream).

Both the overloaded operator functions return a stream. The symbol ‘&’ at the end of name of the

stream represents that the operator function returns a reference i.e., it returns an object of the stream

rather than returning the value of the stream itself.

The program below illustrates the operation of overloading both the insertion and extraction

operators.

Example

#include <iostream>

using namespace std;

class Complex

{

private:

double real, imag;

public:

Complex() { }

Complex(double r, double i)

{

real=r;

imag =1;

}

friend ostream& operator<<(ostream& output, Complex& obj);

friend istream& operator>>(istream& input, Complex& obj);

};

ostream& operator<<(ostream& output, Complex& obj)

{

output<<obj.real<< “,”<<obj imag;

return output;

}

istream& operator >>(istream& input, Complex& obj)

{

input >>obj.real>>obj.imag;

return input;

}

int main()

{

Complex obj1(2.5, 3.5);

Complex obj2(1.0, 4.6);

cout<<obj 1<<endl<<obj2;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 122 P.Revathy,AssistantProfessor

 Output

4.6 Error handling during file operations:

While performing input/output operations on the file one may encounter any of the following

unknown conditions.

A file being opened doesn’t exist,

The file name chosen for a new file already exists.

The possibility of the disk being full.

Using a disk that is write protected.

Using an invalid name for a file.

An attempt to perform an operation when the file is not open for that purpose and so on.

Checking and handling all these unknown conditions is called error handling during file operations.

The C++ file stream uses a stream-state member of the is class. This member maintains the

information on the status of a file that is currently being used. This member also uses bit fields to

store the status of error conditions. The meaning of each bit of the stream-state is shown below,

Figure: Stream-State Field

eof bit

This bit indicates having reached of end-of-file.

fail bit

https://1.bp.blogspot.com/-rK5BiuQtCA4/XyDdiP6uQhI/AAAAAAAAJWw/nnjXGvSJNB4v2EAS-p0jem2JmJdxk7-yACLcBGAsYHQ/s1600/IMG_20200726_0019.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 123 P.Revathy,AssistantProfessor

This bit indicates that an operation failed. It may be due to formatting,

bad bit

This bit indicates some invalid Operation occurred or something is wrong with the buffer.

hard fail

This bit indicates irrecoverable error.

The function ios ∷ tdstate() is used to obtain the value of the stream-state variable.

The ios class provides several functions like eof(), good () fail() and bad() to read the status

recorded ina file stream.

These functions are discussed below, .

(a) eof()

This function returns true (or non-zero value) on reaching end-of-file while reading i.e., if EOF flag

is set otherwise it returns false (zero).

(b) fail()

This function returns true when an input/output operation has failed, i.e. if fail bit, bad bit or hard

fail flag is set.

(c) bad()

If an invalid operation is performed or any irrecoverable error has ‘occurred then this function

returns true ie., if bad bit or hardfail flag is set. However it returns false if it is possible to recover

from any other reported error and continue the operation.

(d) good()

If no error has occurred then this function returns true. That is, all the above functions are false and

I/O flag is set. And a program can proceed to perform I/O operations. If this function returns false

then it means that the program can’t perform further Operations.

(e) clear()

When this function is called with no arguments, it clears all error bits. This is also used to set

specified flags. For example clear (ios :: failbit).

The following program illustrates the use of these functions. Assume that the file “Example.txt”

already exists.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 124 P.Revathy,AssistantProfessor

Program

#include<fstream.h>

#include<stdlib.h>

#include<conio.h>

void main()

{

void warning(ofstreame&);

ofstream str;

clrscr();

str.open(“Example.txt”, ios∷ noreplace);

if(!str)

{

warning(str);

exit(1);

}

else

{

str<<“This text is written into the file example.txt’”;

if(!str)

{

warning(str);

exit(2);

}

str.close();

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 125 P.Revathy,AssistantProfessor

void warning(ofstream &str)

{

cout << endl <<“Unable to open file example.txt”;

cout <<endl <<“Error state =” <<str.rdstate();

cout <<endl <<“Good =” <<str.good();

cout <<endI <<“EOF =” <<str.eof();

cout <<endl <<“Fail =” <<str.fail();

cout <<end] <<“Bad+” <<str.bad();

getch();

}

Output

4.7 Formatted I/O:

Formatted Data

The data which has undergone formatting is referred as formatted data. Formatting is a way of

representing data by performing necessary changes to the “setting” criterion depending on the

user’s requirement. The various settings include,

(i) Changing the number format

(ii) Modifying the field width

(iii) Changing the decimal point.

Generally, formatting is done using manipulators together with I/O functions.

Program

#include <iostream.h>

https://1.bp.blogspot.com/-LmMZDzN5SWA/XyEBj9uT8FI/AAAAAAAAJW8/GPF3imI9J5Uunw90Ego9puIjE_wbavIxQCLcBGAsYHQ/s1600/IMG_20200726_0021.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 126 P.Revathy,AssistantProfessor

#include <conio.h>

int main()

{

clrscr();

int a = 13;

cout <<“\n The value of a is ” <<a<<endl; // displays decimal number 13

cout <<“\n The hexadecimal value of a is ” <<hex<<a; // displays hexadecimal number of 13 i.e., d

cout <<endl;

cout.width(14); //displays the number with a width of 14

cout <<a;

getch();

return 0;

}

Output

The above program formats the data and displays onto the screen based on user requirement.

Formatted Input/Output

Formatted console I/O functions used in C++ for formatting the cae.

1. ios class functions and flags

2. Manipulators +

3. Custom/user-defined manipulators.

1. ios Class Functions and Flags

ios Class Function

The various ios class functions are as follows,

(i) width() :

(ii) precision()

https://1.bp.blogspot.com/-fJ8Ow4fLAgw/XyECRqjUn_I/AAAAAAAAJXE/p8-54qRYfGE6MxXcDb7FIrPgbQxlrJH7wCLcBGAsYHQ/s1600/IMG_20200726_0022.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 127 P.Revathy,AssistantProfessor

(iii) fill()

(iy) self()

(i) ios::width()

A function width() is a number function that is used to set the width of a field in order to display the

output value. The declaration of this function can be done in either of the following ways,

(a) int width();

This function on its invocation returns the present settings of the width.

(b) int width(int);

This functions on its invocation sets the width size as integer value (which is specified within the

argument) and returns the previous settings of the width.

However, it should be assured that the width size for each and every item is specified separately.

This is because, if in case the width size of a field is smaller than the size of the value that is to be

printed, then C++ widens the field width to fit the value.

(ii) ios::precision()

The precision() function is also a number function that specifies the number of digits that are to be

displayed after the decimal point where floating point numbers are to be printed. The declaration of

this function can be done in either of the following ‘ways.

(a) int precision();

This function on its invocation returns the present setting of floating point precision.

(b) int precision(int);

This function on its invocation sets the floating point and returns the previous setting of this

precision.

(iii) ios::fill()

The function fill()-is used to fill the empty locations by other required characters. The declaration of

this function can also be done in éither of the following ways,

(a) char fill();

This function on its invocation returns the present settings of fill character.

(b) char fill(char);

This function on its invocation resets the fill character and finally returns the previous fill setting.

(iv) . ios::self()

It is a member function of ios char which sets the formatting flag when invoked.

The declaration of this function can be done in either of the following ways,

(a) DataType self (argl, arg2);

This function removes the bits marked in var as defined by the data number x and then resets the

bits marked in var 'x'

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 128 P.Revathy,AssistantProfessor

(b) DataType self (datatype)

This function on its invocation sets the flag in accordance to the bits marked in the parameterized

‘data type.

Program

#include<iostream.h>

#include<conio.h>

int main()

{

clrscr();

cout.width(10);

int a = cout.width(5);

cout<<a;

return 0;

}

Output

This program has two width function calls. The first width() function call sets the column width at

position 10. The next width() function call sets the column width at position 5 and returns the first

column position i.e., 10. This value is taken by “a”. Finally, cout function displays 10 at column

position 5.

Flags with Bitfields

The various bit-fields along with their format flags are,

(i) ios::adjustfield

(ii) ios::floatfield

(iii) ios::basefield.

(i) ios::adjustfield

This bitfield is a data member associated with the setf() function. It specifies the action of the value

required by the output.

The action of the output value in bit-field ios::adjustfied as follows,

https://1.bp.blogspot.com/-GTmf8iwYeb8/XyGY5iYDy2I/AAAAAAAAJXQ/qi7yJnV07EYP8xw4DaWIAqwjoXMzZ-D4gCLcBGAsYHQ/s1600/IMG_20200726_0023.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 129 P.Revathy,AssistantProfessor

ios::left (Left justified output)

ios::right (Right justified output)

ios::internal (Padding after sign and base)

The declaration of ios::adjustfield can be done in the following manner,

static const long adjustfield;

(ii) ios::floatfield

This bit-field is another data member associated with a setf() function. It sets the floating point

notation to scientific notation or fixed point notation.

The different ios::float field along with its flag format are as follows,

ios::scientific (scientific notation)

ios::fixed (fixed point notation)

The declaration of ios::floatfield can be done in the following manner,

static const long floatfield;

(iii) ios::basefield

This field is also a data member associated with setf() function. It sets the notations to decimal base,

octal base and hexadecimal base.

The different ios::basefield along with their flag format are as follows,

ios::dec (Decimal base)

ios::oct (Octal base)

ios::hex (hexadecimal base).

The declaration of ios::basefield can be done in the following manner,

static const long basefield;

Example

#include<iostream.h>

#include<conio.h>

void main()

{

int number;

clrscr();

cout<<“Enter a number:”;

cin>>number;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 130 P.Revathy,AssistantProfessor

cout<<“The representation of integer in the form of decimal, octal and hexadecimal is: ”;

cout.setf(ios::dec, ios::basefield);

cout<<number<<“ ,”;

cout.setf(ios::oct, ios::basefield);

cout<<number<<“ and ”;

cout.setf(ios::hex, ios::basefield);

cout<<number}

getch();

}

Output

https://1.bp.blogspot.com/-P1bRM0ZZ1lU/XyGZwhQS4-I/AAAAAAAAJXY/tNkpJJehNPkeDePVtZfQiiTM2RZq5RH6QCLcBGAsYHQ/s1600/IMG_20200726_0025.jpg

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 131 P.Revathy,AssistantProfessor

UNIT- V

Exception Handling: Benefits of exception handling, Throwing an exception, The try block,

Catching an exception, Exception objects, Exception specifications, Stack unwinding,

Rethrowing an exception, Catching all exceptions.

5.Exception Handling:

Exception :

An exception is a run time error that occurs while executing a program. The run time errors might

be conditions such as division by zero, access to an array out of bounds, running out of memory or

disk space etc. These exceptions should be handled correctly otherwise, the program terminates

abnormally.

Exception Handling :

The process of handling these types of errors in C++ is known as exception handling.

In C++, we handle exceptions with the help of the try and catch blocks, along with

the throw keyword.

 try - code that may raise an exception

 throw - throws an exception when an error is detected

 catch - code that handles the exception thrown by the throw keyword

Note: The throw statement is not compulsory, especially if we use standard C++ exceptions.

Syntax for Exception Handling in C++:

The basic syntax for exception handling in C++ is given below:

try {

 // code that may raise an exception

 throw argument;

}

catch (exception) {

 // code to handle exception

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 132 P.Revathy,AssistantProfessor

}

Here, we have placed the code that might generate an exception inside the try block.

Every try block is followed by the catch block.

When an exception occurs, the throw statement throws an exception, which is caught by

the catch block.

The catch block cannot be used without the try block.Example:

The following example illustrates the mechanism of exception handling.

#include<iostream>

using namespace std;

int main()

int a, b, c;

cout <<"Enter a and b values:";

cin >> a >>b;

if (b == 0)

try

{

if (b == 0) throw b;

else

cout <<"c="<<a/b;

}

catch(int x)

{

cout<<"Error: Divide by Zero exception\n";

}

return 0;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 133 P.Revathy,AssistantProfessor

}

Output

Example 1: C++ Exception Handling

// program to divide two numbers

// throws an exception when the divisor is 0

#include <iostream>

using namespace std;

int main() {

 double numerator, denominator, divide;

 cout << "Enter numerator: ";

 cin >> numerator;

 cout << "Enter denominator: ";

 cin >> denominator;

 try {

 // throw an exception if denominator is 0

 if (denominator == 0)

 throw 0;

 // not executed if denominator is 0

 divide = numerator / denominator;

 cout << numerator << " / " << denominator << " = " << divide << endl;

 }

 catch (int num_exception) {

 cout << "Error: Cannot divide by " << num_exception << endl;

 }

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 134 P.Revathy,AssistantProfessor

 return 0;

}

Output 1:

Enter numerator: 72

Enter denominator: 0

Error: Cannot divide by 0

Output 2:

Enter numerator: 72

Enter denominator: 3

72 / 3 = 24

The above program divides two numbers and displays the result. But an exception occurs if the

denominator is 0.

To handle the exception, we have put the code divide = numerator / denominator; inside the try

block. Now, when an exception occurs, the rest of the code inside the try block is skipped.

The catch block catches the thrown exception and executes the statements inside it.

If none of the statements in the try block generates an exception, the catch block is skipped.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 135 P.Revathy,AssistantProfessor

Working of try, throw, and catch statements in C++:

Notice that we have thrown the int literal 0 with the code throw 0;.

We can throw any literal or variable or class, depending on the situation and depending on what we

want to execute inside the catch block.

The catch parameter int num_exception takes the value passed by the throw statement i.e. the

literal 0.

5.1Benefits of exception handling:

The benefits of exception handling are as follows

(a) Exception handling can control run tune errors that occur in the program.

(b) It can avoid abnormal termination of the program and also shows the behaviour of

program to users.

(c) It can provide a facility to handle exceptions throws message regarding exception and

completes the execution of program by catching the exception

(d) It can separate the error handling code and normal code by using try-catch block.

(e) It can produce the normal execution flow for a program.

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 136 P.Revathy,AssistantProfessor

(f) It can implement a clean way to propagate error.i.e.When an invoking method cannot

manage a particular situations, then it throws an exception and asks the invoking method

to deal with such situation.

(g) It develops a powerful coding which ensures that the exceptions can be prevented.

(h) It also allows to handle related exceptions by single exception handler. All the related

errors are grouped together by using exceptions. And then they are handled by using

single exception handler.

(i) Separation of annual code from error handling code eliminates the need for checking

the errors in normal execution path there decreasing the cycles.

(j) A failed constructor can also be handled by throwing an exception. The code for try,

catch and throw blocks must be written in the constructor itself.

 5.2 Throwing an exception:

An exception detected in, try block is thrown using "throw" keyword. An exception can be

thrown using in following number of ways.

throw(exception),

throw exception;

throw;

Where, exception is an object of any type including a constant. The third form of Throw

statement is used in rethrowing of an exception. The objects that are intended for error handling

can also be thrown.

The point at which an exception is thrown is called a throw point. When exception is thrown the

control leaves the try block and it reaches to the catch block associated with the try block where

the exception is handled.

The throw point can he in a nested function call or in a nested scope within a try block. In any

one of these cases the control is transferred to the catch statement

Program

#include<iostream>

using namespace

int main()

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 137 P.Revathy,AssistantProfessor

{

int p,q;

cout<<"\nEnter the values of p and q:\n";

cin>>p>>q;

int j;

j=p>q?0:1; //condition operator that determines whether p>q, if yes assign j=0 else j=1

try

{

if(j==0) //condition that verifies whether j-0 or not

{

cout<<"substration of (p-q)<<"\n"; //perform sbustration j=0

}

else

{

throw(j); //throw exception if j?0

}

}

catch(int i)

{

cout<<"the exception is caught: j="<<j<<"\n"; //display the detected exception on screen

}

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 138 P.Revathy,AssistantProfessor

Output

 5.3 The try block:

Try is a keyword that is used to detect the exceptions i.e.., run time errors. The statements that

generates exceptions are kept inside the try block. The runtime errors can be handled and

prevented using try block. The general syntax of try block is as follows,

try

{

//code

throw exception

}

A try block can throw more than one exception. There should he a catch block to handle the

exceptions thrown by try block.

Example

#include<iostream>

using namespace std;

void square() //A function called square is defined

{

int num;

cout<<"Enter a number:";

cin>>num;

if(num>0) //This condition checks whether number is greater than zero or not

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 139 P.Revathy,AssistantProfessor

{

cout<<"Square of the number is:" <<num*num<endl; //Compute the square of number and

display the result on screen

else

throw(num); //if number<0 throw an exception.

int main()

{

try

{

square();

square();

}

catch(int i) //This statement catches an exception

{

cout<<"Exception caught\n":

}

return 0:

}

Output

 5.4 Catching an exception:

The catch block handles an exception thrown by the try The general syntax of catch block is

shown below,

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 140 P.Revathy,AssistantProfessor

catch(type argument)

{

//code

}

A catch block takes an argument as an exception. These arguments specify the type of an

exception that can be handled by the catch block. When an exception is thrown the control goes

to catch block. If the type of exception thrown matches the argument then the catch block is

executed, otherwise the program terminates abnormally. If no exception is thrown from the try

block then the catch block is skipped and control goes immediately to the next statement

following the catch block.

Program

#include<iostream>

#include<string>

using namespace std:

int main()

{

int a, b, c;

cout <<"Enter the value of a: ";

cin:>>a;

cout "Enter the value of b:;

cin>>b;

try

{

if(b)=0)

{

throw b;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 141 P.Revathy,AssistantProfessor

else

if (b < 0)

{

throw "Negative denominator not allowed";

}

c = a/b;

cout<<"\nThe value of c is:" <<c;

}

catch(int num)

{

cout<<"You cannot enter "<<num<<" in denominator.";

}

}

Output

 5.5 Exception objects:

The exception object holds the error information about the exception that had occurred. The

information includes the type of error i.e., logic error or run time error and state of the program

when the error occurred. An exception object is created as soon as exception occurs and it is

passed to the corresponding catch block as a parameter. This catch block contains the code to

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 142 P.Revathy,AssistantProfessor

catch the occurred exception. It uses the methods of exception object for handling the

exceptions.

Syntax :

try

{

throw exception object;

}

catch (Exception &exceptionobject)

{

}

To retrieve the message attached to the exception, exception object uses a method called what ().

This method returns the actual messages.

Syntax for what () Method:

exceptionobject.what();

Program :

#include <iostream>

#include <exception>

using namespace std;

class MyException : public exception

{

public:

const char * what() const throw()

{

return" divide by zero exceptionl\n";

}

};

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 143 P.Revathy,AssistantProfessor

int main()

{

try

{

int x, y;

cout << "Enter the two numbers :. \n";

cin>>x>>y;

if(y==0)

{

MyException z;

throw z;

}

else

{

cout <<"x/y =" <<x/y << endl;

}

}

catch(exception &e)

{

cout<<e.what();

}

}

Output:

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 144 P.Revathy,AssistantProfessor

5.6 Exception specifications:

Exception specification is a feature which specifies the compiler about possible exception to be

thrown by a function.

Syntax :

return_type FunctionName(arg_list) throw (type_list)

In the above syntax 'return_type' represents the type of the function. FunctionName represents

the name of the function, arg_list indicates list of arguments passed to the function, throw is a

keyword used to throw an exception by function and type_list indicates list of exception types.

An empty exception specification can indicates that a function cannot throw any exception. if a

function throws an exception which is not listed in exception specification then the unexpected

function is called. This function terminates the program. In the function declaration, if the

function does not have any exception specification then it can throw any exception.

Example :

1. void verify(int p) throw(int)

In the above example, void is the return type, and verify() is the name of the function, int p is the

argument. It is followed by exception specification i.e., throw(int), the function verify() is throws

an exception of type 'int'.

2. void verify(int p) throw()

Here, the function can throw any exception because it has empty exception specification.

Program:

#include<iostream>

#include<exception>

using namespace std;

void verify(int p) throw(int)

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 145 P.Revathy,AssistantProfessor

{

if(p==1)

throw p;

cout<<"\nEnd of verify().function()";

}

int main()

try

{

cout<<p==1\n";

verify(1);

}

catch(int i)

{

cout<<"Interger exception is caught \n";

}

cout<<"\nEnd of main() function";

//getch();

return 0;

}

Output

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 146 P.Revathy,AssistantProfessor

5.7 Stack unwinding:

Whenever exception is thrown, usually the control of program shifts from the try block and looks

for a corresponding handler. During this session the C++ run time calls destructor relative to all

automatic objects created while the initiation of try block. This consequence is usually referred

as stack unwinding. As a result of it, all the automatic objects which were created get destroyed

in the reverse order of creation.

Assume that the program control is busy in creating an object and this object in turn processes

sub-objects or array elements. Now,Consider that an exception is raised while this process is in

progress. To manage such consequences, destructors are called for those sub-objects array

elements which were executed successfully prior to the raising of any exception.

The terminate function is called on the account that the destructor throws- an exception and there

is none to handle this exception, while the stack unwinding process is in progress.

Program:

The following program demonstrates stack unwinding

#include<iostream>

using namespace std;

void func_a() throw (int)

{

cout<<"\n func_a() Start ";

throw 50;

cout<<"\nfunc_a() End ";

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 147 P.Revathy,AssistantProfessor

void func_b() throw(int)

{

cout<<"\n func_b() Start";

func_a();

cout<<"\n func_b() End";

}

void func_c() throw(int)

{

cout<<"\n func_c Start";

try

{

func_b();

}

catch(int i)

{

cout<<"\n Caught Exception:"<<i;

}

cout<<\n func_c() End";

}

int main()

{

func_c();

getchar();

return 0;

}

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 148 P.Revathy,AssistantProfessor

Output:

5.8 Rethrowing an exception:

In the program execution, when an exception received by catch block is passed to another

exception handler then such situation is referred to as rethrowing of exception.

This is done with the help of following statement,

throw;

The above statement does not contain any arguments. This statement throws the exception to

next try catch block.

Program:

#include<iostrearn>

using namespace std;

void subtract(int p, int q) //A function called subtract with two arguments is defined

{

cout<<"The subtract() function contains\n";

try //try block1

{

if(p==0) //This condition checks whether p is equal to zero or not.

//if yes throw an exception else perform subtraction

throw p; //This statement throws an exception

else

cout<<"The result of subtraction is:" <<p-q<<"\n";

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 149 P.Revathy,AssistantProfessor

}

catch(int) //This statement catches the exception throw it again to the next try block

{

cout<<"NULL value is caught\n";

throw;.

}

cout<<."End of subtract()\n\n";

}

int main()

{

Cout<<"\n The main() function contains\n";

try

{

subtract(5, 3); //passing integer values to subtract

subtract(0, 2);

}

catch(int) //This statement catches the rethrown exception

{

cout<<"NULL value caught inside main()\n";

}

cout<<End of main() function \n";

return 0:

}

Output :

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 150 P.Revathy,AssistantProfessor

5.9 Catching all exceptions:

Catching Multiple Exceptions:

In C++, a user can catch all exceptions simultaneously In order to do this, a single catch block is

defined for catching all the exceptions thrown by using different throw statements. This catch

block is of generic type.

Syntax:

catch

{

//statements fur handling various exceptions

}

Program:

#include<iostream>

using namespace std;

void number(int p) //defining a function called number with single argument

{

try

{

 if(p==0)

{

//if p is equal to zero throw exception

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 151 P.Revathy,AssistantProfessor

throw 'p';

}

else

if(p>0)

{

throw 'q';

}

else

if(p<0)

{

throw 'r';

}

cout<<"Try Block \n";

}

catch(char ch) //defining single catch block

{

cout<<"\n Exception caught\n";

}

}

int main()

(

number(0);

number(5);

number(-2);

return 0;

OBJECT ORIENTED PROGRAMMING USING C++ (CS2105ES)

CSE, NRCM Page 152 P.Revathy,AssistantProfessor

}

Output

https://lh3.googleusercontent.com/-dTNZMzFFo4w/X6OU8KxIvbI/AAAAAAAAJgQ/CKrciJ0swPI89uPsuTrH49Tt4N_F7enfgCLcBGAsYHQ/image.png

	Monolithic Programming Paradigm:
	Structure-oriented Programming Paradigm :
	Procedure-oriented Programming Paradigm :
	Object-oriented Programming Paradigm :
	Object A Object B

	1.4 Overview of OOPs Concepts:
	1.5 Structure of a C++ program:
	#include<iostream.h>
	# is the preprocessordirective command sign. include is a pre-processor directive command. iostream means input & output stream.
	.h means extension of header file. #include<conio.h>
	conio is a console input & output
	3. Class declaration section:
	4. Member function definitions section:
	I. Primary/Fundamental data types: -
	1.Integer Data type: -
	2. short int: -
	3. long int: -
	2. Character Data types: -
	3. Real/Floating point data types: -
	2. double: -
	3. long double: -
	4.Additional datatypes in C++ :
	datatype: Type of data that can be stored in this variable. variable_name: Name given to the variable. value: It is the initial value stored in the variable.
	Rules For Declaring Variable:

	C++ expression consists of operators, constants, and variables which are arranged according to the rules of the language. It can also contain function calls which return values. An expression can consist of one or more operands, zero or more operators...
	1.9 Operators:
	1. Arithmetic operator:-
	2. Relational operators:-
	3. Logical operators:-
	6. Conditional operator/Ternary opertor:-
	7. Increment and Decrement operator:-
	1. Pre-increment operator:
	2. Post-increment operator:
	3. Pre-decrement operator:
	4. Post-decrement operator:
	9. Special operators-
	10. Additional operators in C++
	1. new operator:-
	2. delete operator:-
	1.10 Operator Precedence :

	1.11 Expression Evaluation:
	Implicit Conversion (Type Conversion):
	Explicit Conversion (Type Casting):

	Example
	1.13 Pointers:
	How to use a pointer?
	1.14 Arrays :
	Declaring an Array in C++:
	Point to Every Array Elements
	Example 1: C++ Pointers and Arrays
	1.16 Strings :
	Strings are used for storing text.

	1.17 Structure:
	Structure is a collection of different data types. It is similar to the class that holds different types of data.
	The Syntax Of Structure :
	How to create the instance of Structure?
	How to access the variable of Structure:
	C++ Struct Example:

	1.18 References in C++ :
	UNIT-2
	C++ Classes and Data Abstraction:

	UNIT - III
	Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes, Access to the base class members, Base and Derived class construction, Destructors, Virtual base class.
	Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Abstract classes, Implications of polymorphic use of classes,Virtual...
	3.8.2 Virtual functions :

